Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 122-132    DOI: 10.3785/j.issn.1008-973X.2023.01.013
    
Experimentalrimental research on hysteric performance of mild steel damper for shear wall vertical connection
Hong-mei XIAO(),Li-meng ZHU*(),Chun-wei ZHANG
School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
Download: HTML     PDF(3041KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A tension-compression type demountable mild steel damper for shear wall vertical connections was proposed and could highly increase this structure’s energy dissipation ability. A loading structure with high strength and three pairs of damper specimens with different limb geometrical shapes were designed based on the lever principle in order to analyze the hysteric behavior of this tension-compression damper. The structure can enlarge the displacement load. The bolt connection boundary condition and the tension-compression cyclic loading process were simulated. These specimens were respectively installed on the loading structure and tested in the same condition to analyze their failure modes, strength, ductility, energy dissipation ability and the reliability of the bolt connection. Their cyclic load-displace curves, skeleton curves, stiffness degradation curves, strength and ductility coefficients were utilized to evaluate their bearing and energy dissipating abilities. The influence of the limb geometrical shape on their mechanical behavior was analyzed. The finite element model was constructed to simulate the dampers’ failure behavior. The buckling of damper limbs was analyzed as the typical failure mode. The Z-type mild steel damper exhibits higher buckling-restrained and energy dissipating ability than that of the other two types, make full use of the material performance of low yield point steel, and could be rapidly replaced after being damaged.



Key wordsresilient prefabricated shear wall      vertical connection structure      seismic resilience      mild steel damper      damage-control ability      replaceability     
Received: 24 February 2022      Published: 17 January 2023
CLC:  TU 352  
Fund:  国家重点研发计划资助项目(2019YFE0112400);山东省重点研发计划(重大科技创新工程)资助项目(2021CXGC011204)
Corresponding Authors: Li-meng ZHU     E-mail: xiaohongmei@qut.edu.cn;zhulimeng@qut.edu.cn
Cite this article:

Hong-mei XIAO,Li-meng ZHU,Chun-wei ZHANG. Experimentalrimental research on hysteric performance of mild steel damper for shear wall vertical connection. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 122-132.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.013     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/122


剪力墙竖向连接软钢阻尼器滞回性能试验研究

提出应用于剪力墙竖向韧性连接体的易拆装的拉压耗能软钢阻尼器. 为了研究拉压荷载作用下该阻尼器的滞回性能,基于杠杆原理,设计制作能放大加载位移的高承载销轴-钢梁加载装置和3对不同耗能肢形状的试件,模拟阻尼器的螺栓连接边界和拉压往复受力过程. 将阻尼器试件同条件依次安装并开展拟静力循环往复加载试验,研究试件的破坏模式、 强度及变形能力、耗能特性及螺栓连接的可靠性,获得试件的滞回曲线、骨架曲线、刚度退化曲线、承载力及延性系数等. 对阻尼器的耗能承载能力进行评价分析,研究耗能肢型体参数对力学性能的影响. 建立有限元模型,模拟阻尼器的失效行为. 结果表明,阻尼器以耗能肢屈曲为典型破坏模式,Z型耗能肢阻尼器与其他2种耗能肢形状的阻尼器相比,具备更好的防屈曲性能和耗能能力,能够发挥低屈服点钢材的力学性能,震损后可以快速更换.


关键词: 韧性装配式剪力墙,  竖向连接结构,  抗震韧性,  软钢阻尼器,  损伤可控,  可更换功能 
Fig.1 Deformation mechanism and schematic diagram of shear wall vertical connection structures
Fig.2 Geometrical dimension of mild steel damper specimen
分组 试件 编号 加载位置 耗能 肢型 Lh/mm Lb/mm n
1 ZN01-T 顶部 I型 50 15 7
1 ZN01-B 底部 I型 50 15 3
2 ZN02-T 顶部 Z型 50 15 3
2 ZN02-B 底部 Z型 50 15 3
3 ZN03-T 顶部 斜柱型 50 15 3
3 ZN03-B 底部 斜柱型 50 15 3
Tab.1 Geometric parameter of mild steel damper specimen
试件 t /mm fy/MPa fu/MPa fu/fy Es/MPa ζ /%
LP1 10 122.5 265.1 2.14 211960 51.2
LP2 10 127.7 268.7 2.10 227331 49.8
LP3 10 126.5 266.3 2.11 211049 49.1
均值 10 125.6 266.7 2.12 216870 50.0
Tab.2 Material testing data of LYP steel
Fig.3 Test system of damper cyclic loading
Fig.4 Mechanism of calculating damper loading-displacement curves
Fig.5 Test loading protocols of acuators
Fig.6 Arrangement of measuring points (top loading)
Fig.7 Skeleton curves
Fig.8 Failure modes of dampers
Fig.9 Out-of-plane buckling displacement of limbs after failure
Fig.10 Axial force-displacement hysteretic loops of dampers with different types
Fig.11 Stiffness degradation curves
Fig.12 Accumulated energy consumed curves
Fig.13 Energy dissipation coefficient
试件编号 加载方向 ${\varDelta _{\rm{y}}}/{\text{mm}}$ ${N_{\rm{y}}}/{\text{kN}}$ ${\varDelta _{\max }}/{\text{mm}}$ ${N_{\max }}/{\text{kN}}$ ${\varDelta _{\rm{u}}}/{\text{mm} }$
ZN01-T 1.41 88.81 5.63 102.69 9.04
ZN01-T ?0.39 ?90.6 ?3.61 ?107.63 ?5.97
ZN02-T 1.59 86.49 5.65 108.49 10.20
ZN02-T ?0.57 ?89.05 ?3.89 ?107.67 ?8.07
ZN03-T 1.50 88.47 4.97 104.65 9.89
ZN03-T ?0.46 ?87.46 ?2.96 ?110.94 ?6.65
ZN02-B 1.64 88.34 4.51 106.47 10.03
ZN02-B ?0.52 ?89.54 ?3.08 ?106.64 ?8.30
Tab.3 Axial force and displacement eigenvalues of specimens
试件编号 $ {N_{\rm{y}}} $ /kN $ {N_{\max }} $ /kN ${ { {N_{\max } } }/ { {N_{\text{y} } } } }$
单个 同型 单个 同型 单个 同型
ZN01-T 89.70 89.70 105.16 105.16 1.17 1.17
ZN02-T 87.77 88.36 108.10 107.33 1.23 1.22
ZN02-B 88.94 88.36 106.56 107.33 1.20 1.22
ZN03-T 86.35 87.97 107.80 107.80 1.25 1.22
Tab.4 Mean bearing capacity eigenvalue of specimens
试件编号 ${\varDelta _{\rm{y}}}/{\text{mm}}$ ${\varDelta _{\max }}/{\text{mm}}$ ${\varDelta _{\rm{u}}}/{\text{mm}}$ $\;\mu $
同个 同型
ZN01-T 0.90 4.62 7.51 8.34 8.34
ZN02-T 1.08 4.77 9.14 8.46 8.52
ZN02-B 1.07 3.80 9.16 8.57 8.52
ZN03-T 0.98 3.96 8.25 8.45 8.45
Tab.5 Mean axial displacement eigenvalue of specimens
Fig.14 Finite element model of loading system for damper specimens
Fig.15 Comparison between skeleton curves of damper specimens and simulated monotonic loading curves
Fig.16 Simulation results of failure mode of damper specimens
[1]   薛艳, 刘杰, 姜祥华 全球及主要构造带大震活动状态研究[J]. 地球物理学报, 2021, 64 (12): 4425- 4436
XUE Yan, LIU Jie, JIANG Xiang-hua Process and trend of great earthquakes in the globe and main zones[J]. Chinese Journal of Geophysics, 2021, 64 (12): 4425- 4436
[2]   詹世革, 张攀峰 国家自然科学基金力学学科发展现状和“十三五”发展战略[J]. 力学学报, 2017, 49 (2): 478- 483
ZHAN Shi-ge, ZHANG Pan-feng Review of NSFC projects on mechanics and the 13th five-year development strategy[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49 (2): 478- 483
[3]   聂建国 我国结构工程的未来——高性能结构工程[J]. 土木工程学报, 2016, 49 (9): 1- 8
NIE Jian-guo The future of structural engineering in China: high-performance structural engineering[J]. China Civil Engineering Journal, 2016, 49 (9): 1- 8
[4]   吕西林, 武大洋, 周颖 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40 (2): 1- 15
LV Xi-lin, WU Da-yang, ZHOU Ying State-of-the-art of earthquake resilient structures[J]. Journal of Building Structures, 2019, 40 (2): 1- 15
[5]   周颖, 顾安琪 自复位剪力墙结构四水准抗震设防下基于位移抗震设计方法[J]. 建筑结构学报, 2019, 40 (3): 118- 126
ZHOU Ying, GU An-qi Displacement-based seismic design of self-centering shear walls under four-level seismic fortifications[J]. Journal of Building Structures, 2019, 40 (3): 118- 126
[6]   苗欣蔚, 黄炜, 胡高兴, 等 水平缝螺栓连接的全装配式复合墙体受力性能试验研究[J]. 湖南大学学报: 自然科学版, 2021, 48 (5): 19- 28
MIAO Xin-wei, HUANG Wei, HU Gao-xing, et al Experimental study on mechanical behavior of fully assembled composite wall with bolted connection on horizontal joints[J]. Journal of Hunan University: Natural Sciences, 2021, 48 (5): 19- 28
[7]   徐咏, 熊峰, 陈江 装配式剪力墙竖向焊接节点抗剪性能[J]. 湖南大学学报: 自然科学版, 2018, 45 (5): 53- 61
XU Yong, XIONG Feng, CHEN Jiang Shear behavior of vertical welded connection in precast shear wall[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (5): 53- 61
[8]   徐龙河, 陈曦, 肖水晶. 内置碟簧自复位钢筋混凝土剪力墙拟静力试验及损伤分析[J]. 建筑结构学报, 2021, 42(7): 56-64.
XU Long-he, CHEN Xi, XIAO Shui-jing. Quasi-static test and damage analysis on self-centering reinforced concrete shear wall with disc spring devices [J]. Journal of Building Structures, 2021, 42(7): 56-64.
[9]   ZHANG Y, XU L H Cyclic response of a self-centering RC wall with tension-compression-coupled disc spring devices[J]. Engineering Structures, 2022, 250: 113404
doi: 10.1016/j.engstruct.2021.113404
[10]   王威, 赵昊田, 权超超, 等 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报: 工学版, 2021, 55 (8): 1407- 1418
WANG Wei, ZHAO Hao-tian, QUAN Chao-chao, et al Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1407- 1418
[11]   王威, 宋鸿来, 权超超, 等 横波钢板混凝土剪力墙震损修复及抗侧刚度分析[J]. 浙江大学学报: 工学版, 2021, 55 (9): 1694- 1704
WANG Wei, SONG Hong-lai, QUAN Chao-chao, et al Seismic damage repair and lateral stiffness analysis of horizontal corrugated steel plate concrete composite shear wall[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (9): 1694- 1704
[12]   吕西林, 朱奇云 软钢阻尼器加固震损再生混凝土框架振动台试验[J]. 同济大学学报: 自然科学版, 2019, 47 (7): 914- 924
LV Xi-lin, ZHU Qi-yun Shaking table test of earthquake-damaged recycled aggregate concrete frame retrofitted with steel dampers[J]. Journal of Tongji University: Natural Science, 2019, 47 (7): 914- 924
[13]   BEDRINANA L A, TANI M, NISHIYAMA M Deformation and cyclic buckling capacity of external replaceable hysteretic dampers for unbonded post-tensioned precast concrete walls[J]. Engineering Structures, 2021, 235: 112045
doi: 10.1016/j.engstruct.2021.112045
[14]   LI Y D, GENG F F, DING Y L, et al Influence of mild steel damper design parameters on energy dissipation performance of low-damage self-centering precast concrete frame connections[J]. Soil Dynamics and Earthquake Engineering, 2021, 144: 106696
doi: 10.1016/j.soildyn.2021.106696
[1] Wei WANG,Shang-xin GAO,Ai-qun LI,Xing-xing WANG. Seismic responses of disc spring isolated-single degree of freedom system based on asymmetric model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1095-1105.
[2] Shuai LIU,Chao PAN,Zhi-guang ZHOU. Seismic performance and parametric influences of damping-coupled wall system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 492-502.
[3] ZHONG Zhen-yu, LOU Wen-juan. Vibration reduction of high-rise buildings with converted TLCD acted by wind load[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 1081-1087.
[4] GONG Shun-feng, XIA Qian, JIN Wei-liang. Investigation on damage mechanism of RC
column under close-in explosion
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1405-1410.
[5] ZHANG Yong-le, JIANG Jian-qun, LIU Jia-jin, WANG Zhen-yu. Seismic damage assessment of reinforced concrete structure and
its seismic design
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1294-1300.
[6] XIAO Na, RONG Li, DONG Dan-Lin. Optimal placements of actuators in vibration active control for
doublelayer spherical grid shell structures
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 942-949.