Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 111-121    DOI: 10.3785/j.issn.1008-973X.2023.01.012
    
Seismic behavior of polypropylene fiber concrete column in saline soil environment
Hai-bo LU1(),Guang-tai ZHANG1,2,*(),Shi-tuo LIU1,Xue-fan LI1,Xia HAN1
1. College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830046, China
2. Xinjiang Key Laboratory of Building Structures and Earthquake Resistance, Urumqi 830046, China
Download: HTML     PDF(3512KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Eight polypropylene fiber lithium slag concrete (PLiC) columns and three reinforced concrete (RC) columns were designed and manufactured with the days of erosion, axial compression ratio and coupling stress ratio as the main variables in order to analyze the seismic performance of PLiC columns under coupled loads in saline soil environment. A solution with a mass fraction of 8.3% NaCl+10% Na2SO4 was used to soak the specimens after applying a continuous load. Eleven specimens were subjected to low-cycle cyclic load tests respectively, and the failure modes, hysteresis curves, skeleton curves, ductility and stiffness degradation of each specimen were analyzed after the immersion erosion was completed. The variation rules of ductility and energy dissipation capacity of PLiC column and RC column under different variables were clarified. Results show that PLiC column is better than RC column in salt soil erosion resistance. The energy dissipation capacity of PLiC column and RC column decreases firstly and then increases with the increase of erosion time, and ductility continuously decreases, while the decreasing amplitude of PLiC column is smaller than that of RC column. The total energy dissipation of PLiC column increases with the same loading displacement when the axial compression ratio increases from 0.2 to 0.3. The energy dissipation and stiffness degradation of the specimen decrease with the increase of coupling stress ratio.



Key wordscoupled loads in saline soil environment      polypropylene fiber lithium slag concrete (PLiC)      low-cycle cyclic load      seismic performance     
Received: 04 October 2021      Published: 17 January 2023
CLC:  TU 375  
Fund:  国家自然科学基金资助项目(51968070)
Corresponding Authors: Guang-tai ZHANG     E-mail: 1550185515@qq.com;zgtlxh@126.com
Cite this article:

Hai-bo LU,Guang-tai ZHANG,Shi-tuo LIU,Xue-fan LI,Xia HAN. Seismic behavior of polypropylene fiber concrete column in saline soil environment. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 111-121.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.012     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/111


盐渍土环境下聚丙烯纤维混凝土柱抗震性能

为了研究盐渍土环境耦合荷载下聚丙烯纤维锂渣混凝土(PLiC)柱的抗震性能,以侵蚀天数、轴压比、耦合应力比为主要变量,设计并制作8根PLiC柱试件和3根钢筋混凝土(RC)柱试件. 采用8.3%(质量分数)NaCl+10%(质量分数)Na2SO4的溶液,浸泡施加持续荷载后的试件. 在浸泡侵蚀完成后,分别对11根试件进行低周往复循环荷载试验,分析各试件的破坏模式、滞回曲线、骨架曲线、延性及刚度退化等,明确PLiC柱和RC柱在不同变量下延性及耗能能力的变化规律. 结果表明,PLiC柱的耐盐渍土侵蚀性能优于RC柱. 随着侵蚀时间的增加,PLiC柱和RC柱耗能能力均出现先下降后上升的趋势,延性均持续下降,PLiC柱的下降幅值小于RC柱. 当轴压比从0.2增加至0.3时,PLiC柱在相同加载位移时的总耗能增大. 随着耦合应力比的增大,试件的耗能、刚度退化均呈现下降的趋势.


关键词: 盐渍土环境耦合荷载作用,  聚丙烯纤维锂渣混凝土(PLiC),  低周往复荷载,  抗震性能 
Fig.1 Detailed drawing of specimen geometry and reinforcement
试件编号 Dσ n t/d
RC-0-0.2-0 0 0.2 0
PLiC-0-0.2-0 0 0.2 0
PLiC-0-0.3-0 0 0.3 0
RC-0.2-0.2-90 0.2 0.2 90
PLiC-0.2-0.2-90 0.2 0.2 90
PLiC-0.2-0.3-90 0.2 0.3 90
PLiC-0.1-0.2-90 0.1 0.2 90
PLiC-0.35-0.2-90 0.35 0.2 90
RC-0.2-0.2-180 0.2 0.2 180
PLiC-0.2-0.2-180 0.2 0.2 180
PLiC-0.2-0.3-180 0.2 0.3 180
Tab.1 Parameters of test specimens
Fig.2 Schematic diagram of load device and salt solution coupled load
试块
种类
$\varphi_{\rm{p}} $/% $\varphi _{\rm{l}} $/% ρc/
(kg·m?3)
ρg/
(kg·m?3)
ρs/
(kg·m?3)
ρw/
(kg·m?3)
ρr/
(kg·m?3)
RC 0 0 261 1360 657 98.4 2.6
PLiC 0.1092 20 209 1360 657 98.4 2.6
Tab.2 Mix propotion of concrete
化学成分 wB 化学成分 wB
SiO2 54.39 SO3 8.30
Li2O 0.77 Na2O 0.26
MgO 0.24 Fe2O3 1.40
K2O 0.14 Al2O3 19.83
CaO 7.98
Tab.3 Chemical composition of lithium slag %
纤维类型 D/μm ρ/(g·cm?3) l/mm e/GPa Rm/MPa
聚丙烯 33 0.91 19 > 3.5 530
Tab.4 Physical properties of polypropylene fiber
Fig.3 Loading device
Fig.4 RC column and PLiC column surfaces after salt solution erosion
Fig.5 Crack distribution of RC column and PLiC column
Fig.6 Hysteresis curves of RC column and PLiC column
Fig.7 Skeleton curves of RC column and PLiC column
试件编号 方向 Py/kN Δy/mm Pmax/kN Δmax/mm Pu/kN Δu/mm μ
RC-0.2-0 反向 87.95 13.18 95.6 24.80 81.26 32.98 2.97
RC-0.2-0 正向 82.29 8.847 94.2 19.30 80.03 30.33 2.97
PLiC-0-0.2-0 反向 91.44 13.68 96.9 19.25 82.37 37.04 3.54
PLiC-0-0.2-0 正向 77.42 7.01 88.7 11.00 75.40 30.62 3.54
PLiC-0-0.3-0 反向 84.00 11.00 92.8 33.00 92.80 33.00 3.19
PLiC-0-0.3-0 正向 103.96 9.74 116.2 16.50 98.10 33.00 3.19
RC-0.2-0.2-90 反向 75.63 14.80 85.5 33.10 72.67 41.36 2.88
RC-0.2-0.2-90 正向 68.65 12.26 78.7 16.54 66.90 36.41 2.88
PLiC-0.1-0.2-90 反向 96.50 12.22 102.8 18.99 87.37 41.17 3.50
PLiC-0.1-0.2-90 正向 83.95 8.70 100.3 16.58 85.25 31.59 3.50
PLiC-0.2-0.2-90 反向 76.42 8.21 85.7 13.79 78.20 31.59 3.26
PLiC-0.2-0.2-90 正向 81.75 12.57 94.5 21.96 80.20 33.63 3.26
PLiC-0.35-0.2-90 反向 88.13 14.23 95.00 30.25 89.70 44.00 2.80
PLiC-0.35-0.2-90 正向 85.83 14.02 104.4 19.25 88.74 35.27 2.80
PLiC-0.2-0.3-90 反向 81.67 11.95 95.9 24.75 87.20 35.75 2.40
PLiC-0.2-0.3-90 正向 89.37 19.76 107.3 27.50 101.50 35.75 2.40
RC-0.2-0.2-180 反向 82.34 15.01 100.0 24.82 85.00 36.57 2.83
RC-0.2-0.2-180 正向 83.96 8.45 100.4 16.14 85.34 29.06 2.83
PLiC-0.2-0.2-180 反向 82.35 17.64 98.1 41.45 96.70 47.10 3.11
PLiC-0.2-0.2-180 正向 81.53 10.04 93.5 16.40 80.33 35.71 3.11
PLiC-0.2-0.3-180 反向 89.20 11.09 101.8 19.25 86.53 20.46 2.03
PLiC-0.2-0.3-180 正向 102.51 9.75 118.0 13.75 100.3 21.55 2.03
Tab.5 Ductility coefficient of specimens
Fig.8 Energy consumption curves of RC column and PLiC column
Fig.9 Stiffness degradation curves of RC column and PLiC column
[1]   郑山锁, 张艺欣, 裴培, 等 冻融循环作用下钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2020, 41 (6): 84- 91
ZHENG Shan-suo, ZHANG Yi-xin, PEI Pei, et al Experimental study on seismic behavior of reinforced concrete columns under freeze-thaw cycles[J]. Journal of Building Structures, 2020, 41 (6): 84- 91
doi: 10.14006/j.jzjgxb.2017.0838
[2]   李耀, 尹世平, 刘鸣, 等 氯盐干湿循环次数对TRC加固RC柱抗震性能影响[J]. 建筑结构学报, 2019, 40 (4): 94- 103
LI Yao, YIN Shi-ping, LIU Ming, et al Influence of chloride drying and wetting cycles on seismic performance of TRC reinforced RC columns[J]. Journal of Building Structures, 2019, 40 (4): 94- 103
doi: 10.14006/j.jzjgxb.2019.04.010
[3]   王成, 葛广华, 侯建国, 等 南疆地区混凝土结构耐久性现状与影响因素研究[J]. 武汉大学学报:工学版, 2017, 50 (3): 447- 453
WANG Cheng, GE Guang-hua, HOU Jian-guo, et al Research on the status and influencing factors of durability of concrete structures in southern Xinjiang[J]. Journal of Wuhan University: Engineering Science, 2017, 50 (3): 447- 453
[4]   赵建军, 闫长旺, 刘曙光, 等 盐渍土环境中RC桥墩柱地震损伤试验研究与计算分析[J]. 防灾减灾工程学报, 2020, 40 (3): 467- 475
ZHAO Jian-jun, YAN Chang-wang, LIU Shu-guang, et al Experimental study andcalculation analysis of seismic damage of RC bridge piers in saline soil environment[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40 (3): 467- 475
doi: 10.13409/j.cnki.jdpme.2020.03.020
[5]   林德源, 易博, 陈云翔, 等 盐渍土环境下钢筋混凝土腐蚀的研究进展[J]. 材料导报, 2014, 28 (6): 137- 141
LIN De-yuan, YI Bo, CHEN Yun-xiang, et al Research progress on corrosion of reinforced concrete in saline soil[J]. Materials Review, 2014, 28 (6): 137- 141
[6]   权长青, 焦楚杰, 杨云英, 等 混杂纤维混凝土力学性能的正交试验研究[J]. 建筑材料学报, 2019, 22 (3): 363- 370
QUAN Chang-qing, JIAO Chu-jie, YANG Yun-ying, et al Orthogonal experimental study on mechanical properties of hybrid fiber reinforced concrete[J]. Journal of Building Materials, 2019, 22 (3): 363- 370
doi: 10.3969/j.issn.1007-9629.2019.03.006
[7]   ARASH K, MANSOUR G, DE JORGE B, et al The effect of polypropylene fibers on the compressive strength impact and heat resistance of self-compacting concrete[J]. Structures, 2020, 25 (2): 72- 87
[8]   LIU J L, JIA Y M, WANG J Experimental study on mechanical and durability properties of glass and polypropylene fiber reinforced concrete[J]. Fibers and Polymers, 2019, 20 (9): 1900- 1908
doi: 10.1007/s12221-019-1028-9
[9]   SAADUN A, AZRULA M, HAMID R, et al Behaviour of polypropylene fiber reinforced concrete under dynamic impact load[J]. Journal of Engineering Science and Technology, 2016, 11 (5): .684- 693
[10]   徐礼华, 黄彪, 李彪, 等 循环荷载作用下聚丙烯纤维混凝土受压应力-应变关系研究[J]. 土木工程学报, 2019, 52 (4): 1- 12
XU Li-hua, HUANG Biao, LI Biao, et al Study on stress-strain relationship of polypropylene fiber concrete under cyclic loading[J]. China Civil Engineering Journal, 2019, 52 (4): 1- 12
doi: 10.15951/j.tmgcxb.2019.04.001
[11]   梁宁慧, 严如, 田硕, 等 预加荷载下聚丙烯纤维混凝土抗渗机理研究[J]. 湖南大学学报:自然科学版, 2021, 48 (9): 155- 162
LIANG Ning-hui, YAN Ru, TIAN Shuo, et al Study on anti-permeability Mechanism of PFRC under preloading[J]. Journal of Hunan University: Natural Science Edition, 2021, 48 (9): 155- 162
[12]   张喜娥 锂渣对混凝土徐变的影响[J]. 硅酸盐通报, 2018, 37 (3): 856- 860
ZHANG Xi-e Effect of lithium slag on creep of concrete[J]. Bulletin of Ceramics, 2018, 37 (3): 856- 860
doi: 10.16552/j.cnki.issn1001-1625.2018.03.018
[13]   冷发光, 马孝轩, 丁威, 等 滨海盐渍土环境中暴露17 年的钢筋混凝土桩耐久性分析[J]. 建筑结构, 2011, 41 (11): 148- 151
LENG Fa-guang, MA Xiao-xuan, DING Wei, et al Analysis of durability of reinforced concrete piles exposed in coastal saline soil for 17 years[J]. Building Structures, 2011, 41 (11): 148- 151
[14]   王成, 葛广华, 黎亮, 等 南疆盐渍土地区混凝土抗冻性能研究[J]. 长江科学院院报, 2017, 34 (5): 125- 130
WANG Cheng, GE Guang-hua, LI Liang, et al Study on frost resistance of concrete in saline soil area of Southern Xinjiang[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34 (5): 125- 130
doi: 10.11988/ckyyb.20170031
[15]   郝贠洪, 江南, 樊金承, 等 盐渍土环境抗腐蚀性能研究[J]. 混凝土, 2016, (8): 8- 10
HAO Yun-hong, JIANG Nan, FAN Jin-cheng, et al Study on corrosion resistance of saline soil[J]. Concrete, 2016, (8): 8- 10
doi: 10.3969/j.issn.1002-3550.2016.08.002
[16]   逄锦伟 冻融循环作用下锂渣混凝土抗硫酸盐侵蚀研究[J]. 硅酸盐通报, 2019, 38 (1): 304- 309
PANG Jin-wei Study on the resistance of lithium slag concrete to sulfate erosion under freeze-thaw cycles[J]. Bulletin of the Chinese Ceramic Society, 2019, 38 (1): 304- 309
doi: 10.16552/j.cnki.issn1001-1625.2019.01.050
[17]   许开成, 陈子超, 聂行, 等 模拟酸雨环境下掺锂渣钢筋混凝土梁抗弯性能试验研究[J]. 工业建筑, 2018, 48 (3): 21- 25
XU Kai-cheng, CHEN Zi-chao, NIE Hang, et al Experimental study on flexural performance of reinforced concrete beams mixed with lithium slag in simulated acid rain environment[J]. Industrial Building, 2018, 48 (3): 21- 25
doi: 10.13204/j.gyjz201803005
[18]   郝津津. 聚丙烯纤维增强混凝土异形柱边节点试验研究[D]. 天津: 天津大学, 2010.
HAO Jin-jin. Experimental research on side joints of polypropylene fiber reinforced concrete [D]. Tianjin: Tianjin University, 2010.
[19]   韩建平, 刘文林 高轴压比配筋PVA纤维增强混凝土柱抗震性能试验研究[J]. 工程力学, 2017, 34 (9): 193- 201
HAN Jian-ping, LIU Wen-lin Experimental study on seismic performance of reinforced PVA fiber reinforced concrete column with high axial compression ratio[J]. Engineering Mechanics, 2017, 34 (9): 193- 201
doi: 10.6052/j.issn.1000-4750.2016.04.0256
[20]   SIVAKUMAR N, ANANTHI G, BEULAH G, et al An evaluation study on amalgamation and performance of fiber reinforced concrete frames with infills and without infills[J]. Materials Today: Proceedings, 2021, 37 (8): 2360- 2367
[21]   乔治. ECC/RC组合框架结构抗震性能试验与理论研究[D]. 南京: 东南大学, 2019.
George. Experimental and theoretical research on seismic performance of ECC/RC composite frame structures [D]. Nanjing: Southeast University, 2019.
[22]   池跃升. 新疆吐鲁番地区盐渍土特性的试验研究与分析[C]// 2018年全国工程地质学术年会论文集. 西安: 科学出版社, 2018: 10-14.
CHI Yue-sheng. Experimental study and analysis of saline soil properties in the Turpan area of Xinjiang [C]// Proceedings of the 2018 National Academic Conference on Engineering Geology. Xi'an: Science Press, 2018: 10-14.
[23]   李保亮. 水泥-镍渣-锂渣二元及三元复合胶凝材料的水化机理及耐久性[D]. 南京: 东南大学, 2019.
LI Bao-liang. Hydration mechanism and durability of binary and ternary composite cement incorporating ferronickel slag and lithium slag [D]. Nanjing: Southeast University, 2019.
[24]   乔宏霞, 朱彬荣, 陈丁山 西宁盐渍土地区混凝土劣化机理试验研究[J]. 应用基础与工程科学学报, 2017, 25 (4): 805- 815
QIAO Hong-xia, ZHU Bin-rong, CHEN Ding-shan Experimental study on concrete deterioration mechanism in saline soil area of Xining[J]. Journal of Basic Science and Engineering, 2017, 25 (4): 805- 815
doi: 10.16058/j.issn.1005-0930.2017.04.015
[1] Ming-ke DENG,Meng-na JIN,Li-ying GUO,Fu-dong MA,Hua-zheng LIU. Experimental study on seismic performance of ultra-high performance concrete connected precast columns[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1995-2006.
[2] Tong LI,Xin-wu WANG,Qiang SHI,xin BU,Hai-su SUN. Seismic performance of replaceable eccentrically braced steel frame[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1725-1733.
[3] Shuai-ke FENG,Zheng-xing GUO,Lu-yao NI,Guo-jian LI,Chang-yi GONG,Chao XIE,Jian-zheng MAN. Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1464-1472.
[4] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[5] YIN Shi-ping, LI Yao,YANG Yang, YE Tao. Influencing factors of seismic performance of RC columns strengthened with textile reinforced concrete[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 904-913.
[6] HAN Dong, BU Xin, WANG Xin wu, JIANG Cang ru. Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 287-296.
[7] LI Ying-min, YANG Long, LIU Shuo-yu, LUO Wen-wen. Method of failure mode evaluation of structure based on seismic resilience index[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2197-2206.
[8] YU Zhi-wu, PENG Xiao-dan,GUO Wei, PENG Miao-pei. Seismic performance of precast concrete shear wall with U-type reinforcements ferrule connection[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 975-984.