|
|
Design of 2.4 GHz GaAs HBT high linearity power amplifier |
Song ZHANG( ),Haipeng FU*( ) |
School of Microelectronics, Tianjin University, Tianjin 300072, China |
|
|
Abstract A power amplifier operating at 2.4-2.5 GHz was designed based on GaAs HBT technology to meet the requirement of high linearity and high transmission power for the Wi-Fi 6 RF front-end module. The amplifier achieved high linear output power using adaptive bias, second harmonic impedance control, and multistage amplifier distortion complementing. Output matching network insertion loss was reduced by taking advantage of bonding-wire inductance with high-quality factor, and DC and RF power detector was integrated. Test results showed that the gain of the amplifier was 30.6-30.7 dB, the input and output return loss were less than ?10 dB, the output 1 dB compression power was 29.2 dBm, and the corresponding power added efficiency was 26.4%. Under the test signal of 802.11ax standard, MCS7 modulation strategy, and 40 MHz bandwidth, the maximum output power of the amplifier was 24.1 dBm when the error vector magnitude was less than ?30 dB. Under the MCS9 modulation strategy, the maximum output power of the amplifier was 23.6 dBm when the error vector magnitude was less than ?35 dB. Under the MCS11 modulation strategy, the maximum output power of the amplifier was 22.4 dBm when the error vector magnitude was less than ?40 dB, and the corresponding maximum power added efficiency was 10.2%.
|
Received: 14 June 2023
Published: 01 July 2024
|
|
Fund: 国家自然科学基金资助项目(62074110);国家重点研发计划资助项目(2018YFB2202500). |
Corresponding Authors:
Haipeng FU
E-mail: frankz_song@163.com;hpfu@tju.edu.cn
|
2.4 GHz GaAs HBT高线性度功率放大器设计
为了满足Wi-Fi 6射频前端对高线性度、高发射功率的需求,基于GaAs HBT工艺设计工作于2.4~2.5 GHz的功率放大器. 利用有源自适应偏置、二次谐波阻抗控制和多级放大器失真互补实现所设计放大器的高线性输出功率,通过键合金线的高品质因子寄生电感降低输出匹配的插损,并将直流与射频功率检测集成. 测试结果表明,所设计放大器的小信号增益为30.6~30.7 dB,输入输出回波损耗均小于?10 dB,输出1 dB压缩功率为29.2 dBm,对应功率附加效率为26.4%. 在802.11ax标准、MCS7调制策略、40 MHz带宽的测试信号下,当误差矢量幅度小于?30 dB时,所设计放大器的最大输出功率为24.1 dBm. 在MCS9调制策略下,当误差矢量幅度小于?35 dB时,所设计放大器的最大输出功率为23.6 dBm;在MCS11调制策略下,当误差矢量幅度小于?40 dB时,所设计放大器的最大输出功率为22.4 dBm,对应最大功率附加效率为10.2%.
关键词:
功率放大器,
砷化镓,
高线性度,
误差矢量幅度,
二次谐波阻抗
|
|
[1] |
YANG H, YOU H, QIAO S A fully integrated GaAs HBT power amplifier with enhanced efficiency for 5-GHz WLAN applications[J]. IEICE Electronics Express, 2022, 19 (12): 20220157
doi: 10.1587/elex.19.20220157
|
|
|
[2] |
LIU B, YI X, YANG K, et al A carrier aggregation transmitter front end for 5-GHz WLAN 802.11ax application in 40-nm CMOS[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68 (1): 264- 276
doi: 10.1109/TMTT.2019.2939311
|
|
|
[3] |
JU I, GONG Y, CRESSLER J D Highly linear high-power 802.11ac/ax WLAN SiGe HBT power amplifiers with a compact 2nd-harmonic-shorted four-way transformer and a thermally compensating dynamic bias circuit[J]. IEEE Journal of Solid-State Circuits, 2020, 55 (9): 2356- 2370
doi: 10.1109/JSSC.2020.2993720
|
|
|
[4] |
REYNIER P, SERHAN A, PARAT D, et al. A High-power SOI-CMOS PA module with fan-out wafer-level packaging for 2.4 GHz Wi-Fi 6 applications [C]// 2021 IEEE Radio Frequency Integrated Circuits Symposium . Atlanta: IEEE, 2021: 59–62.
|
|
|
[5] |
BEN-BASSAT A, GROSS S, LANE A, et al A fully integrated 27-dBm dual-band all-digital polar transmitter supporting 160 MHz for Wi-Fi 6 applications[J]. IEEE Journal of Solid-State Circuits, 2020, 55 (12): 3414- 3425
doi: 10.1109/JSSC.2020.3024973
|
|
|
[6] |
PASSAMANI A, PONTON D, WOLTER A, et al. A 28 nm low-voltage digital power-amplifier for QAM-256 WIFI applications in 0.5 mm2 area w/ 2D digital-pre-distortion and package combiner [C]// 2018 25th IEEE International Conference on Electronics, Circuits and Systems . Bordeaux: IEEE, 2018: 21–24.
|
|
|
[7] |
NOH Y S, PARK C S PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit[J]. IEEE Journal of Solid-State Circuits, 2002, 37 (9): 1096- 1099
|
|
|
[8] |
HUANG C C, CHEN W T, CHEN K Y High efficiency linear power amplifier for IEEE 802.11g WLAN applications[J]. IEEE Microwave and Wireless Components Letters, 2006, 16 (9): 508- 510
doi: 10.1109/LMWC.2006.880702
|
|
|
[9] |
金婕, 艾宝丽, 史佳, 等 用于IEEE 802.11 b/g/n WLAN的高线性度功率放大器[J]. 半导体技术, 2015, 40 (4): 255- 260 JIN Jie, AI Baoli, SHI Jia, et al High linear power amplifier for IEEE 802.11 b/g/n WLAN applications[J]. Semiconductor Technology, 2015, 40 (4): 255- 260
|
|
|
[10] |
SPIRITO M, DEVREEDE L C N, NANVER L K, et al Power amplifier PAE and ruggedness optimization by second-harmonic control[J]. IEEE Journal of Solid-State Circuits, 2003, 38 (9): 1575- 1583
doi: 10.1109/JSSC.2003.815918
|
|
|
[11] |
XIE H, CHENG Y J, DING Y R, et al A C-band high-efficiency power amplifier MMIC with second-harmonic control in 0.25 μm GaN HEMT technology[J]. IEEE Microwave and Wireless Components Letters, 2021, 31 (12): 1303- 1306
doi: 10.1109/LMWC.2021.3106196
|
|
|
[12] |
KIM J, HONG S K, OH J Highly efficient power amplifier based on harmonic-controlled matching network[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33 (1): 43- 46
doi: 10.1109/LMWC.2022.3196669
|
|
|
[13] |
FRANÇOIS B, REYNAERT P A fully integrated transformer-coupled power detector with 5 GHz RF PA for WLAN 802.11ac in 40 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2015, 50 (5): 1237- 1250
doi: 10.1109/JSSC.2015.2399458
|
|
|
[14] |
KANG S, BAEK D, HONG S A 5-GHz WLAN RF CMOS power amplifier with a parallel-cascoded configuration and an active feedback linearizer[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65 (9): 3230- 3244
doi: 10.1109/TMTT.2017.2691766
|
|
|
[15] |
CHOI K, KIM M, KIM H, et al A highly linear two-stage amplifier integrated circuit using InGaP/GaAs HBT[J]. IEEE Journal of Solid-State Circuits, 2010, 45 (10): 2038- 2043
doi: 10.1109/JSSC.2010.2061612
|
|
|
[16] |
LI W T, WANG S M, LIN G C. A WLAN RF CMOS power amplifier with power detector, high harmonic suppression, and temperature compensation [C]// 2015 European Microwave Conference . Paris: IEEE, 2015: 1287–1290.
|
|
|
[17] |
LI J J, ZHANG Z, ZHANG G A 5.15–6.425 GHz stagger-tuning neutralized power amplifier using a continuous-mode harmonically tuned network[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33 (2): 173- 176
doi: 10.1109/LMWC.2022.3168567
|
|
|
[18] |
GUO T, LU Z, TANG K, et al A floating-body transistor-based power amplifier for sub-6-GHz 5G applications in SOI CMOS 130-nm process[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69 (10): 4088- 4092
|
|
|
[19] |
李皓天. 应用于功放小型化的金丝键合线模型研究[D]. 成都: 电子科技大学, 2021. LI Haotian. Research of gold bonding wire model for power amplifier miniaturization [D]. Chengdu: University of Electronic Science and Technology of China, 2021.
|
|
|
[20] |
ADLERSTEIN M G Thermal stability of emitter ballasted HBT’s[J]. IEEE Transactions on Electron Devices, 1998, 45 (8): 1653- 1655
doi: 10.1109/16.704359
|
|
|
[21] |
LIU W, KHATIBZADEH A, SWEDER J, et al The use of base ballasting to prevent the collapse of current gain in AlGaAs/GaAs heterojunction bipolar transistors[J]. IEEE Transactions on Electron Devices, 1996, 43 (2): 245- 251
doi: 10.1109/16.481724
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|