Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (7): 1524-1532    DOI: 10.3785/j.issn.1008-973X.2024.07.022
    
Design of 2.4 GHz GaAs HBT high linearity power amplifier
Song ZHANG(),Haipeng FU*()
School of Microelectronics, Tianjin University, Tianjin 300072, China
Download: HTML     PDF(2677KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A power amplifier operating at 2.4-2.5 GHz was designed based on GaAs HBT technology to meet the requirement of high linearity and high transmission power for the Wi-Fi 6 RF front-end module. The amplifier achieved high linear output power using adaptive bias, second harmonic impedance control, and multistage amplifier distortion complementing. Output matching network insertion loss was reduced by taking advantage of bonding-wire inductance with high-quality factor, and DC and RF power detector was integrated. Test results showed that the gain of the amplifier was 30.6-30.7 dB, the input and output return loss were less than ?10 dB, the output 1 dB compression power was 29.2 dBm, and the corresponding power added efficiency was 26.4%. Under the test signal of 802.11ax standard, MCS7 modulation strategy, and 40 MHz bandwidth, the maximum output power of the amplifier was 24.1 dBm when the error vector magnitude was less than ?30 dB. Under the MCS9 modulation strategy, the maximum output power of the amplifier was 23.6 dBm when the error vector magnitude was less than ?35 dB. Under the MCS11 modulation strategy, the maximum output power of the amplifier was 22.4 dBm when the error vector magnitude was less than ?40 dB, and the corresponding maximum power added efficiency was 10.2%.



Key wordspower amplifier      gallium arsenide      high linearity      error vector magnitude      second harmonic impedance     
Received: 14 June 2023      Published: 01 July 2024
CLC:  TN 43  
Fund:  国家自然科学基金资助项目(62074110);国家重点研发计划资助项目(2018YFB2202500).
Corresponding Authors: Haipeng FU     E-mail: frankz_song@163.com;hpfu@tju.edu.cn
Cite this article:

Song ZHANG,Haipeng FU. Design of 2.4 GHz GaAs HBT high linearity power amplifier. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1524-1532.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.07.022     OR     https://www.zjujournals.com/eng/Y2024/V58/I7/1524


2.4 GHz GaAs HBT高线性度功率放大器设计

为了满足Wi-Fi 6射频前端对高线性度、高发射功率的需求,基于GaAs HBT工艺设计工作于2.4~2.5 GHz的功率放大器. 利用有源自适应偏置、二次谐波阻抗控制和多级放大器失真互补实现所设计放大器的高线性输出功率,通过键合金线的高品质因子寄生电感降低输出匹配的插损,并将直流与射频功率检测集成. 测试结果表明,所设计放大器的小信号增益为30.6~30.7 dB,输入输出回波损耗均小于?10 dB,输出1 dB压缩功率为29.2 dBm,对应功率附加效率为26.4%. 在802.11ax标准、MCS7调制策略、40 MHz带宽的测试信号下,当误差矢量幅度小于?30 dB时,所设计放大器的最大输出功率为24.1 dBm. 在MCS9调制策略下,当误差矢量幅度小于?35 dB时,所设计放大器的最大输出功率为23.6 dBm;在MCS11调制策略下,当误差矢量幅度小于?40 dB时,所设计放大器的最大输出功率为22.4 dBm,对应最大功率附加效率为10.2%.


关键词: 功率放大器,  砷化镓,  高线性度,  误差矢量幅度,  二次谐波阻抗 
Fig.1 Adaptive bias circuit
Fig.2 Effect of second harmonic control on power amplifier linearity
Fig.3 Effect of quality factor on amplitude-phase in LC resonant circuit
Fig.4 Complementation of amplitude-amplitude and amplitude-phase distortions in multistage amplifier
Fig.5 3D layout diagram and simulation results of output matching network
Fig.6 Schematic of power amplifier
Fig.7 Microscope photo of power amplifier
Fig.8 Scattering parameter simulation and test results
Fig.9 Curve of power gain and power added efficiency versus output power
Fig.10 Test signal results for 802.11ax modulation
Fig.11 Constellation and spectrum diagram at 22.4 dBm output power with MCS11 modulation
Fig.12 Curve of RF and DC power detection versus output power
工艺f/GHzVcc/VG/dB调试方式EVM/ dBPout/dBm
GaAs HBT[1]5.000~5.5005.031.1~31.6MCS93222.1
GaAs HBT[9]2.400~2.5003.323.1~23.264QAM3019.8
0.13um CMOS[14]5.150~5.8503.614.3~15.0256QAM3517.8
GaAs HBT[17]5.150-6.4255.033.0MCS114018.0~20.0
GaAs HBT(本研究)2.400~2.5005.030.6~30.7MCS114021.7~22.4
Tab.1 Performance comparison of high linearity power amplifiers
[1]   YANG H, YOU H, QIAO S A fully integrated GaAs HBT power amplifier with enhanced efficiency for 5-GHz WLAN applications[J]. IEICE Electronics Express, 2022, 19 (12): 20220157
doi: 10.1587/elex.19.20220157
[2]   LIU B, YI X, YANG K, et al A carrier aggregation transmitter front end for 5-GHz WLAN 802.11ax application in 40-nm CMOS[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68 (1): 264- 276
doi: 10.1109/TMTT.2019.2939311
[3]   JU I, GONG Y, CRESSLER J D Highly linear high-power 802.11ac/ax WLAN SiGe HBT power amplifiers with a compact 2nd-harmonic-shorted four-way transformer and a thermally compensating dynamic bias circuit[J]. IEEE Journal of Solid-State Circuits, 2020, 55 (9): 2356- 2370
doi: 10.1109/JSSC.2020.2993720
[4]   REYNIER P, SERHAN A, PARAT D, et al. A High-power SOI-CMOS PA module with fan-out wafer-level packaging for 2.4 GHz Wi-Fi 6 applications [C]// 2021 IEEE Radio Frequency Integrated Circuits Symposium . Atlanta: IEEE, 2021: 59–62.
[5]   BEN-BASSAT A, GROSS S, LANE A, et al A fully integrated 27-dBm dual-band all-digital polar transmitter supporting 160 MHz for Wi-Fi 6 applications[J]. IEEE Journal of Solid-State Circuits, 2020, 55 (12): 3414- 3425
doi: 10.1109/JSSC.2020.3024973
[6]   PASSAMANI A, PONTON D, WOLTER A, et al. A 28 nm low-voltage digital power-amplifier for QAM-256 WIFI applications in 0.5 mm2 area w/ 2D digital-pre-distortion and package combiner [C]// 2018 25th IEEE International Conference on Electronics, Circuits and Systems . Bordeaux: IEEE, 2018: 21–24.
[7]   NOH Y S, PARK C S PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit[J]. IEEE Journal of Solid-State Circuits, 2002, 37 (9): 1096- 1099
[8]   HUANG C C, CHEN W T, CHEN K Y High efficiency linear power amplifier for IEEE 802.11g WLAN applications[J]. IEEE Microwave and Wireless Components Letters, 2006, 16 (9): 508- 510
doi: 10.1109/LMWC.2006.880702
[9]   金婕, 艾宝丽, 史佳, 等 用于IEEE 802.11 b/g/n WLAN的高线性度功率放大器[J]. 半导体技术, 2015, 40 (4): 255- 260
JIN Jie, AI Baoli, SHI Jia, et al High linear power amplifier for IEEE 802.11 b/g/n WLAN applications[J]. Semiconductor Technology, 2015, 40 (4): 255- 260
[10]   SPIRITO M, DEVREEDE L C N, NANVER L K, et al Power amplifier PAE and ruggedness optimization by second-harmonic control[J]. IEEE Journal of Solid-State Circuits, 2003, 38 (9): 1575- 1583
doi: 10.1109/JSSC.2003.815918
[11]   XIE H, CHENG Y J, DING Y R, et al A C-band high-efficiency power amplifier MMIC with second-harmonic control in 0.25 μm GaN HEMT technology[J]. IEEE Microwave and Wireless Components Letters, 2021, 31 (12): 1303- 1306
doi: 10.1109/LMWC.2021.3106196
[12]   KIM J, HONG S K, OH J Highly efficient power amplifier based on harmonic-controlled matching network[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33 (1): 43- 46
doi: 10.1109/LMWC.2022.3196669
[13]   FRANÇOIS B, REYNAERT P A fully integrated transformer-coupled power detector with 5 GHz RF PA for WLAN 802.11ac in 40 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2015, 50 (5): 1237- 1250
doi: 10.1109/JSSC.2015.2399458
[14]   KANG S, BAEK D, HONG S A 5-GHz WLAN RF CMOS power amplifier with a parallel-cascoded configuration and an active feedback linearizer[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65 (9): 3230- 3244
doi: 10.1109/TMTT.2017.2691766
[15]   CHOI K, KIM M, KIM H, et al A highly linear two-stage amplifier integrated circuit using InGaP/GaAs HBT[J]. IEEE Journal of Solid-State Circuits, 2010, 45 (10): 2038- 2043
doi: 10.1109/JSSC.2010.2061612
[16]   LI W T, WANG S M, LIN G C. A WLAN RF CMOS power amplifier with power detector, high harmonic suppression, and temperature compensation [C]// 2015 European Microwave Conference . Paris: IEEE, 2015: 1287–1290.
[17]   LI J J, ZHANG Z, ZHANG G A 5.15–6.425 GHz stagger-tuning neutralized power amplifier using a continuous-mode harmonically tuned network[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33 (2): 173- 176
doi: 10.1109/LMWC.2022.3168567
[18]   GUO T, LU Z, TANG K, et al A floating-body transistor-based power amplifier for sub-6-GHz 5G applications in SOI CMOS 130-nm process[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69 (10): 4088- 4092
[19]   李皓天. 应用于功放小型化的金丝键合线模型研究[D]. 成都: 电子科技大学, 2021.
LI Haotian. Research of gold bonding wire model for power amplifier miniaturization [D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[20]   ADLERSTEIN M G Thermal stability of emitter ballasted HBT’s[J]. IEEE Transactions on Electron Devices, 1998, 45 (8): 1653- 1655
doi: 10.1109/16.704359
[21]   LIU W, KHATIBZADEH A, SWEDER J, et al The use of base ballasting to prevent the collapse of current gain in AlGaAs/GaAs heterojunction bipolar transistors[J]. IEEE Transactions on Electron Devices, 1996, 43 (2): 245- 251
doi: 10.1109/16.481724
[1] Meng-qian CUI,Pei-sheng ZONG,Guo WEI,Ke-ping WANG. Low-power and high-efficiency transmitter based on dual-supply voltage and frequency multiplication technique[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1294-1301.
[2] Zi-heng LIU,Fan-yi MENG,Chen-fei WANG,Kai-xue MA. Monolithic integrated resonant boost converter design[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1035-1043.
[3] Mei-shan LIU,Wei ZHANG,Dong-ning HAO. Design of 0~21 GHz wideband silicon-based digital attenuator with high accuracy[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1399-1406.
[4] Lin-nan LI,Wei ZHANG,Yan-jie DANG,Tai-an LI. Design of low power differential multiplexing beamformer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 571-577.
[5] Yong-zheng ZHAN,Qing-sheng HU. High-speed analog-adaptive decision feedback equalizer with 0.18 μm CMOS technology[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2423-2430.
[6] Ya-yun ZHANG, Jia-rui LIU, Zhi-yu WANG, Jiong-jiong MO, Fa-xin YU. Implementation of direct digital frequency synthesizer based on three-step rotation coordinate rotation digital computer algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 2034-2040.
[7] HAO Zi-yi, XIANG Xiao-yan, CHEN Chen, MENG Jian-yi. Error cancellation flip-flop design with lightweight in-situ error correction[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 605-611.
[8] LIU Li, YANG Yin tang. Effection of morphology of SiC/SiO2 interface on mobility characteristics of MOS devices[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 392-396.
[9] FANG Yu-hua, ZHAO Meng-lian, YUAN Fen-jie, WU Xiao-bo.
Reconfigurable high-efficiency DC-DC converter with lossless current-sensing technique
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1856-1864.
[10] JIANG Wei,ZHAO Ye. Strategy and implementation of multi-mode control in switch-mode power supply[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1580-1585.
[11] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 377-383.
[12] LEI Jian-ming, HU Bei-wen, GUI Han-shu, ZHANG LeLEI Jian-ming, HU Bei-wen, GUI H. Design of fully differential operational amplifier with low cost common feedback circuit[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1777-1783.
[13] ZHANG Bo, PAN Wei-wei, YE Yi, ZHENG Yong-jun, SHI Zheng, YAN Xiao-lang. Design and application of test structure array based on modular unit[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 837-842.
[14] DAI Guo-ding, CHEN Yue, YANG Ling, YUAN Zheng, HUANG Chong. Design and implementation of integration slope generation
and summing circuit
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 83-87.
[15] HANG Guo-qiang, LI Jin-xuan, WANG Guo-fei. A novel sample and hold circuit using clocked neuron-MOS scheme[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 333-337.