Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (7): 1516-1523    DOI: 10.3785/j.issn.1008-973X.2024.07.021
    
28 nm RRAM-based reconfigurable true random number generator
Changkun SONG(),Caiping ZHENG,Chengying CHEN*()
School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
Download: HTML     PDF(1589KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An alternating read and write mode was proposed based on the current-starved ring oscillator (CSRO) true random number generator (TRNG) with resistance random access memory (RRAM), and the entropy source reconstruction scheme was optimized. An entropy configurable resistance window clamping circuit (ECRWCC) was proposed to address the trans conductor linearization issues of RRAM under multiple operating cycles. By reducing the resistance window to maximize the nonlinearity of RRAM, the phenomenon of over-set and over-reset was effectively avoided in ECRWCC, and the stability of the entropy source was ensured. The TRNG was tapeout with a UMC 28 nm HKMG process. The statistical test results of the output data passed the true random number standard test for all test sets of NIST SP800-22. The results showed that within the 95% confidence interval of the Gaussian distribution, the autocorrelation function, of all statistics were in the range of ?0.003 and 0.003, and the output sequence had good randomness.



Key wordsresistive random access memory (RRAM)      true random number generator (TRNG)      entropy source      current-starved ring oscillator      translinear     
Received: 03 June 2023      Published: 01 July 2024
CLC:  TN 453  
Fund:  福建省自然科学基金引导性项目(2023H0052);厦门市重大科技项目(3502Z20221022).
Corresponding Authors: Chengying CHEN     E-mail: 2017000002@xmut.edu.cn;chenchengying@xmut.edu.cn
Cite this article:

Changkun SONG,Caiping ZHENG,Chengying CHEN. 28 nm RRAM-based reconfigurable true random number generator. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1516-1523.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.07.021     OR     https://www.zjujournals.com/eng/Y2024/V58/I7/1516


基于28 nm RRAM的可重构真随机数发生器

基于阻变存储器(RRAM)电流饥饿型环形振荡器的真随机数发生器(TRNG)方案,提出交替读写的操作模式,优化熵源重构机制. 针对现有RRAM在多操作周期下跨导线性化问题,提出熵可配置电阻窗口钳位电路. 通过减小电阻窗口获得RRAM非线性的最大化,所提电路能够有效避免RRAM出现过度置位、过度复位的现象,保证熵源稳定性. 基于UMC 28 nm HKMG工艺对TRNG进行流片. 输出数据统计性测试结果通过了NIST SP800-22所有测试集的真随机数标准测试. 检测结果表明,在高斯分布的95%置信区间,所有统计数据的自相关函数值均落在?0.003~0.003,输出序列具有良好的随机性.


关键词: 阻变存储器(RRAM),  真随机数发生器(TRNG),  熵源,  电流饥饿型环形振荡器,  跨导线性 
Fig.1 Structural diagram of RRAM device
Fig.2 Circuit structure of reconfigurable RRAM true random number generator
Fig.3 Logic array diagram of RRAM transfer gate
Fig.4 RRAM cell reconstruction circuit based on H-bridge
Fig.5 H-bridge based RRAM entropy source reconstruction circuit with resistance window clamping
Fig.6 HfO2-based RRAM set and reset time versus bias voltage
Fig.7 Comparator for rail to rail common mode input rang
Fig.8 Complete circuit combining voltage-to-current conversion circuit and current-starved ring oscillator
Fig.9 Output frequency distribution of current-starved ring oscillator
Fig.10 Phase noise of current-starved ring oscillator
Fig.11 Entropy source post-processing circuit
Fig.12 Test unit of RRAM true random number generator
Fig.13 true random number generator wafer and test platform
Fig.14 Time domain waveform of input and output of post-processing circuit
Fig.15 Output bitmap image before and after entropy source post-processing
Fig.16 Auto correlation properties of output
检测项P-Value通过率检测结果
频数0.678 68697/100通过
块内频数0.474 986100/100通过
累加和0.955 83597/100通过
游程0.474 986100/100通过
最长游程0.759 75698/100通过
二元矩阵秩0.137 282100/100通过
离散傅里叶变换0.137 28297/100通过
重叠模块匹配0.699 31398/100通过
非重叠模块匹配0.711 41397/100通过
通用统计0.550 48599/100通过
线性复杂度0.955 83599/100通过
序列0.384 19998/100通过
近似熵0.719 74797/100通过
随即游动0.534 14662/63通过
随即游动频数0.733 91863/63通过
Tab.1 Summary table of NIST text results
真随机数发生器熵源NRRAMNIST结果熵源保护机制f /kHzP/μW
Zhang等[4]RRAM内部和器件间变化1×2阵列12/15500
Yang等[6]RRAM器件间的复位变化19/914840
Cambou等[7]RRAM器件间变化2 Mbit阵列10/101 000.00
Postel-Pellerin等[12]RRAM开关概率7×7阵列11/15256
Balatti等[15]RRAM传输延迟单个器件9/150.1675
Huang等[16]RRAM内的RTN15/15
本研究RRAM的RTN和器件间变化1×815/155 000.0090
Tab.2 Performance comparison of RRAM-based true random number generator
[1]   SAHAY S, SURI M, KUMAR A, et al. Hybrid CMOS-OxRAM RNG circuits [C]// 2016 IEEE 16th International Conference on Nanotechnology . Sendai: IEEE, 2016: 393–396.
[2]   JIANG H, BELKIN D, SAVEL’EV S E, et al A novel true random number generator based on a stochastic diffusive memristor[J]. Nature Communication, 2017, 8: 882
doi: 10.1038/s41467-017-00869-x
[3]   LIN B, GAO B, PANG Y, et al. A high-speed and high-reliability TRNG based on analog RRAM for IoT security application [C]// 2019 IEEE International Electron Devices Meeting . San Francisco: IEEE, 2019: 1–4.
[4]   ZHANG T, YIN M, XU C, et al High-speed true random number generation based on paired memristors for security electronics[J]. Nanotechnology, 2017, 28 (45): 455202
doi: 10.1088/1361-6528/aa8b3a
[5]   BALATTI S, AMBROGIO S, WANG Z, et al. True random number generation by variability of resistive switching in oxide-based devices[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, 5 (2): 214- 221
[6]   YANG B, ARUMĺ D, MANICH S, et al RRAM random number generator based on train of pulses[J]. Electronics, 2021, 10 (15): 1831
doi: 10.3390/electronics10151831
[7]   CAMBOU B, TELESCA D, ASSIRI S, et al TRNGs from preformed ReRAM arrays[J]. Cryptography, 2021, 5 (1): 8
doi: 10.3390/cryptography5010008
[8]   VEKSLER D, BERSUKER G, VANDELLI L, et al. Random telegraph noise (RTN) in scaled RRAM devices [C]// 2013 IEEE International Reliability Physics Symposium . Monterey: IEEE, 2013: 1–4.
[9]   LIN B, GAO B, PANG Y, et al. A high-performance and calibration-free true random number generator based on the resistance perturbation in RRAM array [C]// 2020 IEEE International Electron Devices Meeting . San Francisco: IEEE, 2020: 1–4.
[10]   YANG J, XU J, WANG B, et al. A low cost and high reliability true random number generator based on resistive random access memory [C]// 2015 IEEE 11th International Conference on ASIC . Chengdu: IEEE, 2015: 1–4.
[11]   GOVINDARAJ R, GHOSH S, KATKOORI S. CSRO-based reconfigurable true random number generator using RRAM [J]. IEEE Transactions on Very Large Scale Integration Systems , 2018, 26(12): 2661–2670.
[12]   POSTEL-PELLERIN J, BAZZI H, AZIZA H, et al. True random number generation exploiting SET voltage variability in resistive RAM memory arrays [C]// 2019 19th Non-Volatile Memory Technology Symposium . San Diego: IEEE, 2019: 1–5.
[13]   CHAI Z, ZHANG W, FREITAS P, et al The over-reset phenomenon in Ta2O5 RRAM device investigated by the RTN-based defect probing technique[J]. IEEE Electron Device Letters, 2018, 39 (7): 955- 958
[14]   IELMINI D, NARDI F, BALATTI S. Evidence for voltage-driven set/reset processes in bipolar switching RRAM [J]. IEEE Transactions on Electron Devices , 2012, 59(8): 2049–2056.
[15]   BALATTI S, AMBROGIO S, CARBONI R, et al. Physical unbiased generation of random numbers with coupled resistive switching devices [J]. IEEE Transactions on Electron Devices , 2016, 63(5): 2029–2035.
[1] ZHAO Jin-chen, ZHAO Meng-lian, WU Xiao-bo. Low voltage ultra-low power delta-sigma modulator[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1225-1231.