Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (7): 1505-1515    DOI: 10.3785/j.issn.1008-973X.2024.07.020
    
Complementary characteristics of wind-photovoltaic-hydropower output in basin
Xinyang LI1(),Weifeng LIU2,*(),Xuning GUO2,Yunling LI2,Feilin ZHU3,Ping’an ZHONG3
1. School of Civil Engineering, Tianjin University, Tianjin 300072, China
2. Water Strategy Research Unit One, MWR General Institute of Water Resources and Hydropower Planning and Design, Beijing 100120, China
3. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
Download: HTML     PDF(2581KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Quantitative assessment of the complementary characteristics of wind-photovoltaic-hydropower power output is important for the layout and optimized scheduling of wind-photovoltaic-hydropower systems. Existing indicators for evaluating complementary characteristics are only applicable to assessing the complementary characteristics between two energy sources. Indicators suitable for evaluating the complementary characteristics of three energy sources were established. Combining historical meteorological data, the long-term complementary characteristics of wind-photovoltaic-hydropower output in the Yalong River basin were revealed. In response to the significant impact of meteorological conditions on wind-photovoltaic-hydropower output and the complexity of short-term complementary characteristics, an intelligent screening model for short-term typical days of wind-photovoltaic-hydropower output was proposed, integrating with machine learning theory. The differences in evaluation results of wind-photovoltaic-hydropower output complementary characteristics under different time calculation steps were analyzed. The results show that at a long-term scale, wind and solar power output compensates for hydropower output, enhancing the hydroelectric energy generation efficiency by 3%. At a short-term scale, hydropower output demonstrated favorable electricity compensation benefits for wind and solar power output, with the wind and solar curtailment rate reduced by 18 percentage points and the output shortage rate reduced by 28 percentage points after hydropower compensation.



Key wordswind-photovoltaic-hydropower output      complementarity analysis      tri-energy complementarity index      machine learning      Yalong River basin     
Received: 11 June 2023      Published: 01 July 2024
CLC:  TP 393  
Fund:  国家重点研发计划重点专项(2022YF3202300);水利部水利青年拔尖人才项目;水利水电规划设计总院“揭榜挂帅”项目;中国博士后科学基金资助项目(2021M702313);中央高校基本科研业务费专项资金资助项目(B240201123).
Corresponding Authors: Weifeng LIU     E-mail: 842212007@qq.com;weifliu@qq.com
Cite this article:

Xinyang LI,Weifeng LIU,Xuning GUO,Yunling LI,Feilin ZHU,Ping’an ZHONG. Complementary characteristics of wind-photovoltaic-hydropower output in basin. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1505-1515.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.07.020     OR     https://www.zjujournals.com/eng/Y2024/V58/I7/1505


流域风光水电出力互补特性

定量评估风光水能源出力互补特性对风光水电站规模布局以及互补优化调度具有重要意义,现有互补特性评价指标仅适用于评价两能源互补特性. 为此建立适合三能源互补特性评价的指标体系,结合历史气象资料,探明雅砻江流域风光水电出力长期互补特性. 针对风光水电出力受气象条件的显著影响和短期互补特性的复杂性,结合机器学习理论,提出风光水电出力短期典型日智能筛选模型,剖析不同时间计算步长对风光水电出力互补特性评价结果的差异. 计算结果表明,长期尺度风光能源出力对水电能源呈现电量补偿特性,使水电能源的发电效益提高3%;短期尺度水电能源出力对风光能源出力具有较好的电力补偿效益,水电补偿后风光弃电率减小了18个百分点,出力短缺率减小了28个百分点.


关键词: 风光水电出力,  互补性分析,  三能源互补性指标,  机器学习,  雅砻江流域 
Fig.1 Schematic of two energy sources output complementarity
Fig.2 Schematic of comprehensive vector for wind-photovoltaic-hydropower output
Fig.3 Schematic of Euclidean distance calculation
Fig.4 Schematic of alignment and curved path of dynamic time warping algorithm
Fig.5 Flowchart of K-Means-DTW algorithm for screening of typical days
Fig.6 Average monthly output of wind-photovltatic-hydropower after standardization
Fig.7 Wind and solar power provide energy compensation for hydropower at long-term scale
Fig.8 Determine optimal number of clusters
算法运行次数SSE
K-Means-EDK-Means-DTW
1756334
2769329
3749321
4761344
5763344
6752326
7762335
8752324
9746335
10760335
平均值757333
方差5360
Tab.1 With-cluster sum of squared errors for different algorithms
Fig.9 Screening of typical days based on K-Means-ED algorithm
Fig.10 Screening of typical days based on K-Means-DTW algorithm
Fig.11 Power output process of wind-photovoltaic-hydro for different typical days
典型日${k_t}\left( {\boldsymbol{r}} \right)$互补等级
a0.703中等互补
b0.624弱互补
c0.522弱互补
d0.538弱互补
e0.764中等互补
f0.852较互补
g0.670中等互补
h0.776中等互补
Tab.2 Comprehensive coefficients of wind-photovoltaic-hydropower output for different typical days
Fig.12 Contribution of energy paired combination outputs to comprehensive complementary coefficient at hour scale
Fig.13 Hydropower output provides power compensation for wind-photovoltaic output at short-term scale
典型日无水电补偿有水电补偿
${\eta _1}$${\eta _2}$${\eta _1}$${\eta _2}$
a028.2400
b0.9417.5600
c17.7716.720.490
d11.1814.9500
e13.9210.270.380
f12.141.7600
g13.9310.701.150
h19.017.230.700
Tab.3 Impact of with and without hydropower compensation on wind-photovoltaic output at short-term scale %
计算时段${\boldsymbol{r}}$${L_p}\left( {\boldsymbol{r}} \right)$${k_t}\left( {\boldsymbol{r}} \right)$
长期$ - 0.336{{\boldsymbol{D}}_{{\mathrm{ws}}}} - 0.851{{\boldsymbol{D}}_{{\mathrm{wh}}}}+0.259{{\boldsymbol{D}}_{{\mathrm{sh}}}} $1.03600.873
短期$ - 0.026{{\boldsymbol{D}}_{{\mathrm{ws}}}} - 0.418{{\boldsymbol{D}}_{{\mathrm{wh}}}}+0.223{{\boldsymbol{D}}_{{\mathrm{sh}}}} $1.38950.716
Tab.4 Complementary of wind-photovoltaic-hydropower output in different calculation periods
Fig.14 Contribution of energy paired combination outputs to comprehensive complementary coefficient in different calculation periods
[1]   WANG X, MEI Y, KONG Y, et al Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system[J]. Energy, 2017, 134: 813- 839
doi: 10.1016/j.energy.2017.06.047
[2]   JURASZ J, BELUCO A, CANALES F A The impact of complementarity on power supply reliability of small scale hybrid energy systems[J]. Energy, 2018, 161: 737- 743
doi: 10.1016/j.energy.2018.07.182
[3]   MONFORTI F, HULD T, BÓDIS K, et al Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach[J]. Renewable Energy, 2014, 63: 576- 586
doi: 10.1016/j.renene.2013.10.028
[4]   DENAULT M, DUPUIS D, COUTURE-CARDINAL S Complementarity of hydro and wind power: improving the risk profile of energy inflows[J]. Energy Policy, 2009, 37 (12): 5376- 5384
doi: 10.1016/j.enpol.2009.07.064
[5]   徐维超. 相关系数研究综述[J]. 广东工业大学学报. 2012, 29(3): 12−17.
XU Weichao. A review on correlation coefficients [J]. Journal of Guangdong University of Technology , 2012, 29(3): 12−17.
[6]   MYERS J L, WELL A D, LORCH R F. Research design and statistical analysis [M]. New York: Routledge, 2010: 271−290.
[7]   LIU Y, XIAO L, WANG H, et al Analysis on the hourly spatiotemporal complementarities between China’s solar and wind energy resources spreading in a wide area[J]. Science China Technological Sciences, 2013, 56: 683- 692
doi: 10.1007/s11431-012-5105-1
[8]   ZHOU H, WU H, YE C, et al Integration capability evaluation of wind and photovoltaic generation in power systems based on temporal and spatial correlations[J]. Energies, 2019, 12 (1): 171
doi: 10.3390/en12010171
[9]   SANTOS-ALAMILLOS F J, POZO-VÁZQUEZ D, RUIZ-ARIAS J A, et al Combining wind farms with concentrating solar plants to provide stable renewable power[J]. Renewable Energy, 2015, 76: 539- 550
doi: 10.1016/j.renene.2014.11.055
[10]   LI Y, AGELIDIS V G, SHRIVASTAVA Y. Wind-solar resource complementarity and its combined correlation with electricity load demand [C]// 2009 4th IEEE Conference on Industrial Electronics and Applications . Xi’an: IEEE, 2009: 3623−3628.
[11]   DOS ANJOS P S, DA SILVA A S A, STO ŠIĆ B, et al Long-term correlations and cross-correlations in wind speed and solar radiation temporal series from Fernando de Noronha Island, Brazil[J]. Physica A: Statistical Mechanics and its Applications, 2015, 424: 90- 96
doi: 10.1016/j.physa.2015.01.003
[12]   王浩, 王旭, 雷晓辉, 等 梯级水库群联合调度关键技术发展历程与展望[J]. 水利学报, 2019, 50 (1): 25- 37
WANG Hao, WANG Xu, LEI Xiaohui, et al The development and prospect of key techniques in the cascade reservoir operation[J]. Journal of Hydraulic Engineering, 2019, 50 (1): 25- 37
[13]   SAILOR D J, SMITH M, HART M Climate change implications for wind power resources in the Northwest United States[J]. Renewable Energy, 2008, 33 (11): 2393- 2406
[14]   CROOK J A, JONES L A, FORSTER P M, et al Climate change impacts on future photovoltaic and concentrated solar power energy output[J]. Energy and Environmental Science, 2011, 4 (9): 3101- 3109
[15]   LIU W, ZHU F, CHEN J, et al Multi-objective optimization scheduling of wind–photovoltaic–hydropower systems considering riverine ecosystem[J]. Energy Conversion and Management, 2019, 196: 32- 43
doi: 10.1016/j.enconman.2019.05.104
[16]   CANTÃO M P, BESSA M R, BETTEGA R, et al Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps[J]. Renewable Energy, 2017, 101: 1215- 1225
doi: 10.1016/j.renene.2016.10.012
[17]   KOTSIANTIS S B. Supervised machine learning: a review of classification techniques [C]// Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering . [S. l.]: IOS Press, 2007: 3−24.
[18]   PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825- 2830
[19]   LOYD S Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28 (2): 129- 137
doi: 10.1109/TIT.1982.1056489
[20]   李映辉. 基于数据挖掘的相似洪水动态识别方法研究及应用 [D]. 南京: 河海大学, 2019.
LI Yinghui. Similar flood dynamic recognition method based on data mining [D]. Nanjing: Hohai University, 2019.
[21]   王小锋, 丁义. 雅砻江流域水调自动化系统建设及应用研究 [J]. 水电与新能源, 2014(6): 46−48.
WANG Xiaofeng, DING Yi. Development and application of automatic water diversion system of Yalong River valley [J]. Hydropower and New Energy , 2014(6): 46−48.
[22]   李长春, 高仕春. 保证出力在水库调度中的应用探讨[J]. 水力发电. 2008, 34(8): 97−99.
LI Changchun, GAO Shichun. Discussion on application of firm power in reservoir operation [J]. Water Power , 2008, 34(8): 97−99.
[23]   李科. 基于多属性的车辆重识别方法研究[D]. 厦门: 厦门大学, 2019.
LI Ke. Vehicle re-identification based on multi-attribute [D]. Xiamen: Xiamen University, 2019.
[24]   朱连江, 马炳先, 赵学泉 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010, 30 (Suppl.2): 139- 141
ZHU Lianjiang, MA Bingxian, ZHAO Xuequan Clustering validity analysis based on silhouette coefficient[J]. Journal of Computer Applications, 2010, 30 (Suppl.2): 139- 141
[25]   TIBSHIRANI R, WALTHER G, HASTIE T Estimating the number of clusters in a data set via the gap statistic[J]. Journal of the Royal Statistical Society: Statistical Methodologys, 2001, 63 (2): 411- 423
[26]   国家能源局. 2019年风电并网运行情况[EB/OL]. (2020-02-28)[2023-05-13]. https://www.nea.gov.cn/2020-02/28/c_138827910.htm.
[1] Pan LI,Bing ZHOU,Tian CHAI,Yuan DENG,Qianxi PAN,Xiaojian WU. Vehicle obstacle avoidance control system considering driving style[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1377-1386.
[2] Yufu HUO,Beihong JIN,Zhaoyi LIAO. Multi-modal information augmented model for micro-video recommendation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1142-1152.
[3] Su LI,Ze CHEN,Baoyan SONG,Haolin ZHANG. Enterprise composite blockchain construction method for business environment evaluation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 891-899.
[4] Longsen HUANG,Jun FANG,Yunliang ZHOU,Zhicheng GUO. Optimization method of approximate aggregate query based on variational auto-encoder[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 931-940.
[5] Yi-cong GAO,Yan-kun WANG,Shao-mei FEI,Qiong LIN. Intelligent proofreading method of engineering drawing based on transfer learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 856-863, 889.
[6] Peng ZHANG,Zi-du TIAN,Hao WANG. Flight parameter data anomaly detection method based on improved generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1967-1976.
[7] Fa-ming HUANG,Li-han PAN,Chi YAO,Chuang-bing ZHOU,Qing-hui JIANG,Zhi-lu CHANG. Landslide susceptibility prediction modelling based on semi-supervised machine learning[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1705-1713.
[8] Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.
[9] You ZHAN,Qiang LI,Xiao-tian MA,Chen-ping WANG,Yan-jun QIU. Macro and micro texture based prediction of pavement surface friction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 684-694.
[10] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[11] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[12] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[13] Le XIE,Xi-dan HENG,Yang LIU,Qi-long JIANG,Dong LIU. Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2266-2272.
[14] Zhi-yuan WAN,Jia-heng TAO,Jia-kun LIANG,Zhen-gong CAI,Cheng CHANG,Lin QIAO,Qiao-ni ZHOU. Large-scale empirical study on machine learning related questions on Stack Overflow[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 819-828.
[15] Dong-xiang KE,Li-min PAN,Sen-lin LUO,Han-qing ZHANG. Android malicious behavior recognition and classification method based on random forest algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 2013-2023.