|
|
Clothing image classification based on multi-scale SE-Xception |
Qiao-hong CHEN( ),YI CHEN,Wen-shu Li,Yu-bo JIA |
School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China |
|
|
Abstract The current newer and better convolutional neural network Xception was used as the foundation network structures. Multi-scale depth separable convolution was employed to improve the richness of model feature information. The SE-Net model was embedded in the model to enhance the useful feature channels and weaken the useless feature channels. The experimental results show that the multi-scale SE-Xception model achieved good performance in two different noise clothing datasets. The average classification accuracy of ACS dataset was 78.34%, which was higher than VGG-16, ResNet-50 and Xception models by 8.52%, 4.81% and 3.69%, respectively. Therefore, it’s verified that the multi-scale SE-Xception model has better ability to extract features, can obtain more clothing information, and thus improve the clothing image classification effect. To some extent, a multi-scale SE-Xception network is conducive to solve the single feature scale and low information richness problems.
|
Received: 14 August 2019
Published: 22 September 2020
|
|
多尺度SE-Xception服装图像分类
应用当前较新颖且分类性能靠前的卷积神经网络Xception作为基础网络结构,尝试采用多尺度的深度可分离卷积来提升模型特征信息的丰富度,在模型中嵌入SE-Net模块增强有用特征通道,减弱无用特征通道. 实验结果表明:提出的多尺度SE-Xception模型在2种噪声程度不同的服装数据集中均取得不错表现;ACS数据集的平均分类准确率为78.34%,分别高于VGG-16、ResNet-50和Xception模型8.52%、4.81%、3.69%;验证了多尺度SE-Xception模型具有更好的特征提取能力,能够提取到更多的服装信息,从而提高服装图像分类效果,一定程度上解决了特征尺度单一、信息丰富度低的问题.
关键词:
服装图像分类,
多尺度SE-Xception,
图像识别,
深度学习,
机器学习,
卷积神经网络(CNN)
|
|
[1] |
中国电子商务研究中心. 2015—2016年度中国服装电商行业报告[R/OL]. (2016-12-26)[2018-12-17]. http://www.100ec.cn/zt/fzyxbg/.
|
|
|
[2] |
OJALA T, PIETIKAINEN M, HARWOOD D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions [C] // Proceedings of 12th International Conference on Pattern Recognition. Jerusalem: IEEE, 1994: 582-585.
|
|
|
[3] |
LOWE D G Distinctive image features from scale-invari-ant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110
doi: 10.1023/B:VISI.0000029664.99615.94
|
|
|
[4] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C] // Computer Vision and Pattern Re-cognition. San Diego: IEEE, 2005: 886-893.
|
|
|
[5] |
BOSSARD L, DANTONE M, LEISTNER C, et al. Apparel classification with style [C] // Asian Conference on Com-puter Vision. Daejeon: Springer, 2012: 321-335.
|
|
|
[6] |
HUO P, WANG Y, LIU Q. A part-based and feature fus-ion method for clothing classification [C] // Pacific Rim Conference on Multimedia. Xi’an: Springer, 2016: 231-241.
|
|
|
[7] |
SURAKARIN W, CHONGSTITVATANA P. Predicting types of clothing using SURF and LDP based on bag of features [C] // International Conference on Electrical Engineering/Electronics. Hua Hin: IEEE, 2015: 1-5.
|
|
|
[8] |
吴苗苗, 刘骊, 付晓东, 等 款式特征描述符的服装图像细粒度分类方法[J]. 计算机辅助设计与图形学学报, 2019, 31 (5): 780- 791 WU Miao-miao, LIU Li, FU Xiao-dong, et al Fine-grained clothing image classification by style feature description[J]. Journal of Computer-aided Design and Computer Graphics, 2019, 31 (5): 780- 791
doi: 10.3724/SP.J.1089.2019.17380
|
|
|
[9] |
LIU Z, LUO P, QIU S, et al. DeepFashion: Powering ro-bust clothes recognition and retrieval with rich annotations [C] // 2016 the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1096-1104.
|
|
|
[10] |
DONG C Y, SHI Y Q, TAO R. Convolutional neural ne-tworks for clothing image style recognition [C] // 2018 International Conference on Computational, Modeling, Simulation and Mathematical Statistics. Pennsylvania: CMSMS, 2018: 592-597.
|
|
|
[11] |
包青平, 孙志锋 基于度量学习的服装图像分类和检索[J]. 计算机应用与软件, 2017, 34 (4): 255- 259 BAO Qing-ping, SUN Zhi-feng Clothing image classification and retrieval based on metric learning[J]. Computer Applications and Software, 2017, 34 (4): 255- 259
doi: 10.3969/j.issn.1000-386x.2017.04.043
|
|
|
[12] |
张振焕, 周彩兰, 梁媛 基于残差的优化卷积神经网络服装分类算法[J]. 计算机工程与科学, 2018, 40 (2): 354- 360 ZHANG Zhen-huan, ZHOU Cai-lan, LIANG Yuan An optimized clothing classification algorithm based on residual convolutional neural network[J]. Computer Engineering and Science, 2018, 40 (2): 354- 360
doi: 10.3969/j.issn.1007-130X.2018.02.023
|
|
|
[13] |
厉智, 孙玉宝, 王枫, 等 基于深度卷积神经网络的服装图像分类检索算法[J]. 计算机工程, 2016, 42 (11): 309- 315 LI Zhi, SUN Yu-bao, WANG Feng, et al Clothing image classification and retrieval algorithm based on deep convolutional neural network[J]. Computer Engineering, 2016, 42 (11): 309- 315
doi: 10.3969/j.issn.1000-3428.2016.11.053
|
|
|
[14] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C] // Advances in Neural Information Processing Systems 25 (NIPS 2012). Nevada: NIPS, 2012: 1097-1105.
|
|
|
[15] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10)[2018-12-17]. https://arxiv.org/abs/1409.1556.
|
|
|
[16] |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C] // 2015 the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
|
|
|
[17] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C] // 2016 the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
|
|
[18] |
CHOLLET F. Xception: deep learning with depthwise separable convolutions [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1251-1258.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|