Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (4): 732-738    DOI: 10.3785/j.issn.1008-973X.2020.04.012
Computer Technology, Inf ormation Engineering     
Channel estimation and detection method for multicarrier system based on deep learning
Zhou-fei WANG(),Wei-na YUAN*()
School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Download: HTML     PDF(1007KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The system framework and imaginary interference were analyzed aiming at the problem of symbol detection and channel estimation in order to effectively improve the communication quality of filter bank multicarrier (FBMC) system. A channel estimation and detection method for FBMC system was proposed based on deep learning. A complete simulation system was established by combining FBMC-offset quadrature amplitude modulation (OQAM) with deep learning model, and the characteristics and label processing of received data were designed. ResNet-DNN neural network was used to model the channel symbol detection module. The original model structure and optimized model parameters were improved, which improved the accuracy of symbol detection compared with traditional classifiers. CNN+NN model was used to model and integrate for estimating, equalizing and detecting channel symbols. The theoretical analysis and simulation results show that the new method is superior to orthogonal frequency division multiplexing (OFDM) system and FBMC system based on pilot estimation in terms of noise resistance, robustness and bit error rate (BER) performance.



Key wordschannel estimation      filter bank multicarrier (FBMC)      deep learning      neural network      symbol detection     
Received: 24 March 2019      Published: 05 April 2020
CLC:  TN 929  
Corresponding Authors: Wei-na YUAN     E-mail: 654007563@qq.com;wnyuan_ice@163.com
Cite this article:

Zhou-fei WANG,Wei-na YUAN. Channel estimation and detection method for multicarrier system based on deep learning. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 732-738.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.04.012     OR     http://www.zjujournals.com/eng/Y2020/V54/I4/732


基于深度学习的多载波系统信道估计与检测

为了提升滤波器组多载波(FBMC)系统的通信质量,针对符号检测与信道估计问题,研究系统框架和虚部干扰问题,提出基于深度学习的FBMC系统信道估计与检测方法. 搭建完整的FBMC-偏移正交幅度调制(OQAM)系统与深度学习模型结合的仿真系统,设计接收数据的特征与标签处理;采用ResNet-DNN神经网络对信道符号检测模块建模,改进原模型网络结构和优化模型参数,和传统的分类器相比,提高了符号检测的准确性;采用CNN+NN模型对信道估计、均衡、符号检测模块进行建模和集成,理论分析和仿真结果表明,新方法的抗噪声能力、鲁棒性和误比特率(BER)性能均优于正交频分复用(OFDM)系统和基于导频估计的FBMC系统性能.


关键词: 信道估计,  滤波器组多载波(FBMC),  深度学习,  神经网络,  符号检测 
Fig.1 Send and receive system diagram of FBMC-OQAM
步骤 描述
1 接收数据信号虚实分离
2 取实部小数点前2位、小数点后6位数字和1位正负号
3 取虚部小数点前2位、小数点后6位数字和1位正负号
4 采用one-hot编码上述18位数字生成18×12的特征矩阵
Tab.1 Feature processing flow of receiving data symbols
Fig.2 ResNet-DNN network model structure
Fig.3 Process structure of symbol detection model
步骤 步骤说明
1 初始化参数、信道以及FBMC类模块
2 产生随机的原始数据比特流bitstream_FBMC(0和1的序列)
3 bitstream_FBMC经过发送端,具体为符号映射、虚实分离、调制得到发送信号s_FBMC
4 s_FBMC进过信道再加上噪声的干扰得到接收信号r_FBMC
5 r_FBMC经过接收端,解调接收信号,基于导频估计出信道H,乘上1/H得到检测信号xDest_FBMC
6 xDest_FBMC进行特征处理作为数据样本的特征,bitstream_FBM标签处理作为标签,产生训练的数据集X
7 用数据集X进行模型的训练,产生的模型参数存放在model中
8 将model用于检测新的接收信号xDest_FBMC_1,预测新的原始信号计算BER
Tab.2 Process step of symbol detection model
参数 数值
QAM阶数 16
子载波间隔 15 kHz
子载波数量 30
FBMC符号数量 15
采样频率 30 kHz
信道名称 ‘AWGN’高斯白信道
载波频率 2.5 GHz
蒙特卡洛迭代次数 20
Tab.3 Communication simulation parameters of FBMC system
参数 数值
激活函数 ReLU
第1个残差层神经元个数 500
后2个残差层神经元个数 200
输出层全连接层神经元个数 16
Dropout率 0.5
损失函数 交叉熵
优化器 Adam
Tab.4 ResNet-DNN model simulation parameters
Fig.4 BER performance comparison on AWGN channel
Fig.5 BER performance comparison on PedestrianA channel
Fig.6 BER Performance comparison of adding DFT algorithms in AWGN Channel
Fig.7 CNN+NN network model structure
参数 数值
激活函数 ReLU
第1通道卷积核大小 2×12
第2通道卷积核大小 3×12
正则项 L2正则
Dropout率 0.5
损失函数 交叉熵函数
优化器 Adam
NN隐藏层神经元个数 500
Tab.5 CNN+NN model simulation parameters
Fig.8 BER performance on AWGN channel(CNN+NN)
[1]   BEAULIEU F D, CHANMPAGNE B. Multicarrier modulation using perfect reconstruction DFT filter bank transceivers [C] // 2005 5th International Conference on Information Communications and Signal Processing. Bangkok: ICICS, 2005: 111-115.
[2]   VIHOLAINEN A, IHALAINEN T, RENFORS M. Performance of time-frequency localized and frequency selective filter banks in multicarrier systems [C] // 2006 IEEE International Symposium on Circuits and Systems. Island of Kos: IEEE, 2006: 1693494.
[3]   BEAULIEU F D. Multicarrier transceivers using DFT filter banks with perfect reconstruction [D]. Canada: McGill University, 2007.
[4]   MARTIN P M, BREGOVIC R, SARAMAKI R. An efficient approach for designing filter banks for multicarrier transmission [C] // 2008 IEEE International Symposium on Circuits and Systems. Seattle, WA: IEEE, 2008: 3206-3209.
[5]   BOROUJENY B F Filter bank spectrum sensing for cognitive radios[J]. IEEE Transactions on Signal Processing, 2008, 56 (5): 1801- 1811
doi: 10.1109/TSP.2007.911490
[6]   LELE C, LEGOUABL R, SIOHAN P. Channel estimation with scattered pilots in OFDM/OQAM [C] // 2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications. Recife: IEEE, 2008: 286-290.
[7]   陈孝武. 脉冲成形OFDM/OQAM系统关键技术研究[D]. 杭州: 浙江大学, 2015.
CHEN Xiao-wu. Research on key technologies of pulse forming OFDM/OQAM system [D]. Hangzhou: Zhejiang University, 2015.
[8]   YE H, LI G Y, JUANG B Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7 (1): 114- 117
doi: 10.1109/LWC.2017.2757490
[9]   YE H, LI G Y. Initial results on deep learning for joint channel equalization and decoding [C] // 2017 IEEE 86th Vehicular Technology Conference. Toronto: IEEE, 2017: 1-5.
[10]   CHENG X, LIU D, ZHU Z, et al. A ResNet-DNN based channel estimation and equalization scheme in FBMC/OQAM systems [C] // 2018 10th International Conference on Wireless Communications and Signal Processing. Hangzhou: WCSP, 2018: 1-5.
[11]   CAO Y, ZHAO Y. Text classification based on TextCNN for power grid user fault repairing information [C] // 2018 5th International Conference on Systems and Informatics. Nanjing: ICSAI, 2018: 1182-1187.
[12]   ZHANG C, ZHANG H, YUAN D, et al Citywide cellular traffic prediction based on densely connected convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (8): 1656- 1659
doi: 10.1109/LCOMM.2018.2841832
[13]   JAVAUDIN J P, LACROIX D, ROUXEL A. Pilot-aided channel estimation for OFDM/OQAM [C] // The IEEE 57th IEEE Semiannual Vehicular Technology Conference. South Korea: IEEE, 2003: 1581-1585.
[14]   LéLé C, LEGOUABLE R, SIOHAN P. Iterative scattered pilot channel estimation in OFDM/OQAM [C] // 2009 IEEE 10th Workshop Signal Process Advances in Wireless Communications. Perugia: IEEE, 2009: 176-180.
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] Hong-li WANG,Bin GUO,Si-cong LIU,Jia-qi LIU,Yun-gang WU,Zhi-wen YU. End context-adaptative deep sensing model with edge-end collaboration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 626-638.
[3] Teng ZHANG,Xin-long JIANG,Yi-qiang CHEN,Qian CHEN,Tao-mian MI,Piu CHAN. Wrist attitude-based Parkinson's disease ON/OFF state assessment after medication[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 639-647.
[4] Hong CHENG,Jia-jie HU,Yong LIU,Yuan-qing YE. Three-dimensional reconstruction algorithm based on fusion of transport of intensity equation and neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 658-664.
[5] Ying-jie ZHENG,Song-rong WU,Ruo-yu WEI,Zhen-wei TU,Jin LIAO,Dong LIU. Metro location point matching and false alarm elimination based on FCM algorithm of target image[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 586-593.
[6] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[7] Fang LIU,Zhen WANG,Rui-di LIU,Kai WANG. Short-term forecasting method of wind power generation based on BP neural network with combined loss function[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 594-600.
[8] Li-feng XU,Hai-fan HUANG,Wei-long DING,Yu-lei FAN. Detection of small fruit target based on improved DenseNet[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 377-385.
[9] Shi-da CHEN,Qiang LIU,Liang HAN. Gradient sparsification compression approach to reducing communication in distributed training[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 386-394.
[10] Yan-wei ZHAO,Jian ZHANG,Xian-ming ZHOU,Geng-yu WU. Dynamic tracking and precise landing of UAV based on visual magnetic guidance[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 96-108.
[11] Wei-qi CHEN,Jing-chang WANG,Ling CHEN,Yong-qin YANG,Yong WU. Prediction model of multi-factor aware mobile terminal replacement based on deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 109-115.
[12] Hao-can XU,Ji-tuo LI,Guo-dong LU. Reconstruction of three-dimensional human bodies from single image by LeNet-5[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 153-161.
[13] Yi-peng HUANG,Ji-su HU,Xu-sheng QIAN,Zhi-yong ZHOU,Wen-lu ZHAO,Qi MA,Jun-kang SHEN,Ya-kang DAI. SE-Mask-RCNN: segmentation method for prostate cancer on multi-parametric MRI[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 203-212.
[14] Pu ZHENG,Hong-yang BAI,Wei LI,Hong-wei GUO. Small target detection algorithm in complex background[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1777-1784.
[15] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.