Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (10): 1967-1976    DOI: 10.3785/j.issn.1008-973X.2022.10.008
    
Flight parameter data anomaly detection method based on improved generative adversarial network
Peng ZHANG1(),Zi-du TIAN2(),Hao WANG1
1. Engineering Training Center, Civil Aviation University of China, Tianjin 300300, China
2. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
Download: HTML     PDF(2369KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Deep learning and generative adversarial network technology were analyzed aiming at the stringent safety and reliability requirements of civil aircrafts, the scarcity of abnormal samples of flight parameter data in actual civil aviation operations, the imbalance of the overall sample and the lack of labeling. A flight-level anomaly detection method for flight parameter data was proposed based on improved generative adversarial network. The method does not rely on the number of samples and labels, and realizes the detection method of unsupervised learning. Normal data samples were input for flight parameter data. The easy-to-converge WGAN-GP improved generative adversarial network model was applied to simulate normal data samples. The Bhattacharyya distance between the input data and the simulated normal data was calculated, and the detection of abnormal data was realized. The test verification was conducted through the artificial synthesis data set of NASA simulated flight parameter data and the flight parameter data set constructed by the quick access recorder data collected in the real operating environment. Results show that the proposed method has a significant improvement in some anomaly detection performance indicators compared with the commonly used unsupervised model.



Key wordsanomaly detection      generative adversarial network      flight parameter data      machine learning      unsupervised learning     
Received: 23 October 2021      Published: 25 October 2022
CLC:  V 328  
  TP 181  
Fund:  国家自然科学基金-民航联合基金资助项目(U1733201)
Cite this article:

Peng ZHANG,Zi-du TIAN,Hao WANG. Flight parameter data anomaly detection method based on improved generative adversarial network. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1967-1976.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.10.008     OR     https://www.zjujournals.com/eng/Y2022/V56/I10/1967


基于改进生成对抗网络的飞参数据异常检测方法

针对民用飞行器安全性、可靠性要求严苛,实际民航运营中飞行参数的异常样本稀少,整体样本不平衡且缺少标注的问题,研究深度学习与生成对抗网络技术,提出基于改进生成对抗网络的飞参数据飞行级异常检测方法. 该方法不依赖样本数量与标签,实现无监督学习的检测方法. 针对飞参数据,输入正常数据样本,应用易收敛的WGAN-GP改进型生成对抗网络模型,模拟生成正常数据样本,计算输入数据与模拟正常数据的巴氏距离,实现对异常数据的检测. 通过美国国家航空航天局模拟飞参数据的人工合成数据集以及真实运营环境下采集的快速存取记录器数据构建的飞参数据集,开展试验验证. 结果表明,与常用无监督模型相比,提出方法在部分异常检测性能指标上有显著提升.


关键词: 异常检测,  生成对抗网络,  飞参数据,  机器学习,  无监督学习 
Fig.1 Structure diagram of improved generative adversarial network
网络层类型 参数 输出维度
生成器Gn
全连接层1 Dense 激活函数:LeakyReLU (?, 1000, 1)
卷积层1 Conv1D 卷积核维度:3×1
步长:1
(?, 1000, 32)
批标准化层1 BN 激活函数:LeakyReLU (?, 1000, 32)
卷积层2 Conv1D 卷积核维度:3×1
步长:1
(?, 1000, 32)
批标准化层2 BN 激活函数:LeakyReLU (?, 1000, 32)
卷积层3 Conv1D 卷积核维度:3×1
步长:1
(?, 1000, 32)
批标准化层3 BN 激活函数:LeakyReLU (?, 1000, 32)
卷积层4
Conv1D
卷积核维度:5×1
步长:1
激活函数:tanh
(?, 1000, 1)
鉴别器Dn
卷积层1 Conv1D 卷积核维度:3×1
步长:1
激活函数: LeakyReLU
(?, 1000, 32)
池化层1 MaxPooling1D 核函数维度:2×1 (?, 500, 32)
卷积层2 Conv1D 卷积核维度:3×1
步长:1
激活函数: LeakyReLU
(?, 500, 32)
池化层2 MaxPooling1D 核函数维度:2×1 (?, 250, 32)
展平层1 Flatten (?, 8000)
全连接层1 Dense Dropout率:0.4
激活函数:LeakyReLU
(?, 64)
全连接层2 Dense 激活函数:tanh (?, 1)
Tab.1 Structure table of improved generative adversarial network
Fig.2 Anomaly detection method of flight parameter data based on generative adversarial network
异常类型 模拟异常案例
无序离散开关序列(I类) 低于襟翼限制时,初始化襟翼前,调动起落架
开关额外切换(II类) 进近阶段起落架展开后又收回
开关缺失(III类) 襟翼在着陆时没有按正常状态完全展开
Tab.2 Typical abnormal sample
Fig.3 Visualization of samples generated by each model
Fig.4 Anomaly detection results
数据集 F1 P R AUC
S1 0.737 1.0 0.583 0.769
S2 0.857 1.0 0.750 0.871
S3 0.737 1.0 0.583 0.717
S4 0.737 1.0 0.583 0.734
S5 0.400 1.0 0.250 0.383
Tab.3 Performance index of anomaly detection of proposed method
数据集 F1 AUC
本文方法 DCGAN GAN OCSVM 本文方法 DCGAN GAN OCSVM
S1 0.737 0.737 0.737 0.500 0.769 0.762 0.746 0.391
S2 0.857 0.857 0.857 0.500 0.871 0.829 0.853 0.333
S3 0.737 0.737 0.737 0.500 0.717 0.705 0.697 0.482
S4 0.737 0.737 0.737 0.452 0.734 0.731 0.731 0.682
S5 0.400 0.400 0.400 0.800 0.383 0.338 0.358 0.779
Tab.4 Comparison of abnormal detection performance indexes
Fig.5 Receiver operating characteristic curve and dimensionality reduction distribution visualization for each dataset experiment
Fig.6 Abnormal detection of flap position sensors parameters
Fig.7 Abnormal detection of spoiler deflection angle parameters
Fig.8 Abnormal detection of horizontal stabilizer state parameters
[1]   CHANDOLA V, BANERJEE A, KUMAR V Anomaly detection: a survey[J]. ACM Computing Surveys, 2009, 41 (3): 1- 58
[2]   ZHAO W, LI L, ALAM S, et al An incremental clustering method for anomaly detection in flight data[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103406
doi: 10.1016/j.trc.2021.103406
[3]   彭宇, 何永福, 王少军, 等 飞行数据异常检测技术综述[J]. 仪器仪表学报, 2019, 40 (3): 1- 13
PENG Yu, HE Yong-fu, WANG Shao-jun, et al Flight data anomaly detection: a survey[J]. Chinese Journal of Scientific Instrument, 2019, 40 (3): 1- 13
[4]   孙文柱, 曲建岭, 袁涛, 等 基于改进SVDD的飞参数据新异检测方法[J]. 仪器仪表学报, 2014, 35 (4): 932- 939
SUN Wen-zhu, QU Jian-ling, YUAN Tao, et al Flight data novelty detection method based on improved SVDD[J]. Chinese Journal of Scientific Instrument, 2014, 35 (4): 932- 939
[5]   LI L, DAS S, JOHN HANSMAN R, et al Analysis of flight data using clustering techniques for detecting abnormal operations[J]. Journal of Aerospace Information Systems, 2015, 12 (9): 587- 598
doi: 10.2514/1.I010329
[6]   MELNYK I, YADAV P, STEINBACH M, et al. Detection of precursors to aviation safety incidents due to human factors [C]// 13th IEEE International Conference on Data Mining Workshops. Dallas: IEEE, 2013: 407-412.
[7]   MELNYK I, BANERJEE A, MATTHEWS B, et al. Semi-Markov switching vector autoregressive model-based anomaly detection in aviation systems [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 1065-1074.
[8]   BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers [C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 93-104.
[9]   GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al Generative adversarial nets[J]. Communications of the ACM, 2020, 63 (11): 139- 144
doi: 10.1145/3422622
[10]   SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide Marker discovery [C]// International Conference on Information Processing in Medical Imaging. Cham: Springer, 2017: 146-157.
[11]   ZENATI H, ROMAIN M, FOO C S, et al. Adversarially learned anomaly detection[C]// 2018 IEEE 18th International Conference on Data Mining Workshops. Singapore: IEEE, 2018: 727-736.
[12]   YU J, LIN Z, YANG J, et al. Free-form image inpainting with gated convolution [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 4471-4480.
[13]   陈雪云, 黄小巧, 谢丽 基于多尺度条件生成对抗网络血细胞图像分类检测方法[J]. 浙江大学学报: 工学版, 2021, 55 (9): 1772- 1781
CHEN Xue-yun, HUANG Xiao-qiao, XIE Li Classification and detection method of blood cells images based on multi-scale conditional generative adversarial network[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (9): 1772- 1781
[14]   XIA B, BAI Y, YIN J, et al LogGAN: a log-level generative adversarial network for anomaly detection using permutation event modeling[J]. Information Systems Frontiers, 2021, 23 (2): 285- 298
doi: 10.1007/s10796-020-10026-3
[15]   张克明, 蔡远文, 任元 基于生成对抗网络的航天异常事件检测方法[J]. 北京航空航天大学学报, 2019, 45 (7): 1329- 1336
ZHANG Ke-ming, CAI Yuan-wen, REN Yuan Space anomaly events detection approach based on generative adversarial nets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (7): 1329- 1336
[16]   ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks [EB/OL]. (2017-01-17)[2022-09-29]. https://arxiv.org/pdf/1701.04862.pdf.
[17]   ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks [C]// Proceedings of the 34th International Conference on Machine Learning. Sydney: PMLR, 2017: 214-223.
[18]   RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [C]// 4th International Conference on Learning Representations. San Juan: [s. n. ], 2016.
[19]   GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANS [C]// Advances in Neural Information Processing Systems. Long Beach: Curran Associates, 2017: 30.
[20]   DONAHUE J, KRÄHENBÜHL P, DARRELL T. Adversarial feature learning [C]// 5th International Conference on Learning Representations. Toulon: [s. n.], 2017.
[21]   DAS S, MATTHEWS B L, SRIVASTAVA A N, et al. Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study [C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 47-56.
[22]   ZHAO Y, NASRULLAH Z, LI Z Pyod: a python toolbox for scalable outlier detection[J]. Journal of Machine Learning Research, 2019, 20 (5): 1- 7
[23]   RASMUSSEN C E. Gaussian processes in machine learning [C]// Summer School on Machine Learning. Berlin: Springer, 2003: 63-71.
[24]   VAN DER MAATEN L, HINTON G Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (11): 2579- 2605
[1] Fei SUN,Xiao-run LI,Liao-ying ZHAO,Shao-qi YU. Anomaly detection algorithm based on FrFT transform and total variation regularization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1276-1284.
[2] Wen-chao BAI,Xi-xian HAN,Jin-bao WANG. Efficient approximate query processing framework based on conditional generative model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 995-1005.
[3] Li HE,Shan-min PANG. Face reconstruction from voice based on age-supervised learning and face prior information[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1006-1016.
[4] Yi-cong GAO,Yan-kun WANG,Shao-mei FEI,Qiong LIN. Intelligent proofreading method of engineering drawing based on transfer learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 856-863, 889.
[5] Pei-zhi WEN,Jun-mou CHEN,Yan-nan XIAO,Ya-yuan WEN,Wen-ming HUANG. Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 213-224.
[6] Hang-yao TU,Wan-liang WANG,Jia-chen CHEN,Guo-qing LI,Fei WU. Dehazing algorithm combined with atmospheric scattering model based on generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 225-235.
[7] Jun YANG,Jin-tai LI,Zhi-ming GAO. Unsupervised co-calculation on correspondence of three-dimensional shape collections[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1935-1947.
[8] Tong CHEN,Jian-feng GUO,Xin-zhong HAN,Xue-li XIE,Jian-xiang XI. Visible and infrared image matching method based on generative adversarial model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 63-74.
[9] Fa-ming HUANG,Li-han PAN,Chi YAO,Chuang-bing ZHOU,Qing-hui JIANG,Zhi-lu CHANG. Landslide susceptibility prediction modelling based on semi-supervised machine learning[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1705-1713.
[10] Xue-yun CHEN,Xiao-qiao HUANG,Li XIE. Classification and detection method of blood cells images based on multi-scale conditional generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1772-1781.
[11] Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.
[12] You ZHAN,Qiang LI,Xiao-tian MA,Chen-ping WANG,Yan-jun QIU. Macro and micro texture based prediction of pavement surface friction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 684-694.
[13] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[14] Hui-ya HU,Shao-yan GAI,Fei-peng DA. Face frontalization based on generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 116-123.
[15] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.