Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (5): 1080-1090    DOI: 10.3785/j.issn.1008-973X.2024.05.021
    
Joint SOC-SOH estimation for UUV battery management system
Dihua LU1,2(),Shengzeng ZHOU1,2,Ziqiang CHEN3
1. Shanghai Marine Electronic Equipment Research Institute, Shanghai 201108, China
2. Science and Technology on Underwater Acoustics Antagonizing Laboratory, Shanghai 201108, China
3. State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China
Download: HTML     PDF(2962KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A joint state of charge (SOC)-state of health (SOH) method of estimation was proposed in order to improve the state estimation accuracy of unmanned underwater vehicle (UUV) battery management system. A test bench was constructed, and four groups of lithium-ion batteries were used for charging and discharging test under the whole life cycle. Data under different attenuation degrees were obtained. Four-dimensional factors were designed by theoretical derivation and experimental analysis, and a SOH estimation model based on improved support vector regression (SVR) was established. The coupling relationship between battery states was explored. A SOC estimation model based on extended Kalman filter (EKF) was established and the forgetting factor recursive least squares (RLS) algorithm was used to update the model parameters. The SOC estimation results were corrected by SOH. The method was validated through different testing conditions experiment. Results show that the four-dimensional characterization factor and battery capacity have good correlation. The accuracy of SOH estimation model is high, and the accuracy of SOC estimation model is improved by joint modification. The proposed joint estimation method has high universality and reliability, and can be used as an effective state estimation algorithm for embedded battery management system.



Key wordsunmanned underwater vehicle (UUV)      lithium-ion battery      SOC-SOH joint estimation      extended Kalman filter (EKF)      support vector regression (SVR)     
Received: 20 June 2023      Published: 26 April 2024
CLC:  TM 912  
Cite this article:

Dihua LU,Shengzeng ZHOU,Ziqiang CHEN. Joint SOC-SOH estimation for UUV battery management system. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1080-1090.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.05.021     OR     https://www.zjujournals.com/eng/Y2024/V58/I5/1080


适用于无人水下潜航器电池管理系统的SOC-SOH联合估计

为了提高无人水下潜航器(UUV)电池管理系统状态的估计精度,提出荷电状态-健康状态(SOC-SOH)联合估计方法. 搭建测试台架,采用4组锂离子电池进行全寿命周期下的充放电测试,获取不同老化程度下的特性数据. 经理论推导和实验分析设计四维表征因子,建立基于改进支持向量回归(SVR)的SOH估计模型. 探究电池状态的耦合关系,建立基于扩展卡尔曼滤波(EKF)的SOC估计模型,采用遗忘因子递推最小二乘算法(RLS)更新模型参数,利用SOH对SOC估计结果进行修正. 通过不同工况的实验进行验证,结果表明:四维表征因子和电池容量相关性好,SOH估计模型精度高,SOC估计模型精度在联合修正后得到提升. 所提的联合估计方法具有较高的通用性和可靠性,可以作为有效的嵌入式电池管理系统状态估计算法.


关键词: 无人潜航器(UUV),  锂离子电池,  SOC-SOH联合估计,  扩展卡尔曼滤波(EKF),  支持向量回归(SVR) 
电池类别UUV名称国家
锂离子电池REMUS100美国
REMUS6000美国
VEXPLORER加拿大
ALISTAR3000法国
Urashima日本
锂聚合物电池Bluefin9美国
Bulefin21美国
HUGIN 1000挪威
Sea Otter MK Ⅱ德国
Tab.1 Application of lithium-ion batteries in UUV
Fig.1 Test bench for battery charging and discharging cycles
Fig.2 Second-order equivalent circuit model
Fig.3 SOC-OCV fitting curve of battery
Fig.4 Voltage curve during constant current charging stage
Fig.5 Current curve during constant voltage charging stage
Fig.6 Incremental capacity curve with voltage variation
相关元素Person 系数Spearman系数
SOH & H10.92390.9368
SOH & H2?0.9799?0.9856
SOH & H30.99220.9898
SOH & H4?0.9681?0.9833
Tab.2 Correlation between characterization factors and SOH
Fig.7 Correlation between characterization factors and SOH
Fig.8 SOH estimation results of standard group batteries
Fig.9 SOC-OCV curves at different aging stages
Fig.10 Process of system joint estimation
Fig.11 Battery state estimation results under different testing conditions
Fig.12 Battery state estimation results under different aging levels
测试工况SOC0未修正修正
RMSE1RMSE2MAPE1MAPE2RMSE1RMSE2MAPE1MAPE2
FUDS0%0.058 50.133 70.045 60.078 70.014 20.045 10.041 20.011 9
30%0.039 80.031 90.039 60.023 20.031 30.030 50.012 50.010 7
80%0.027 80.016 30.035 80.020 30.010 30.008 50.010 70.008 0
100%0.037 20.017 40.034 40.020 40.011 20.010 20.012 20.008 2
DST0%0.052 40.123 60.021 90.052 30.046 50.046 40.013 70.011 4
30%0.029 80.035 60.018 70.024 30.032 10.032 70.011 40.009 4
80%0.016 50.018 40.017 30.023 40.014 10.006 40.010 00.007 3
100%0.037 30.019 80.020 20.024 10.015 50.008 90.010 40.007 9
Tab.3 Comparison of state estimation results under 630th cycle
[1]   DU X, HU X, HU J, et al An adaptive interactive multi-model navigation method based on UUV[J]. Ocean Engineering, 2023, 267: 113217
[2]   严浙平, 王璐 UUV水下定位方法的研究现状与进展[J]. 哈尔滨工程大学学报, 2017, 38 (7): 989- 1000
YAN Zheping, WANG Lu Research status and progress of UUV underwater localization[J]. Journal of Harbin Engineering University, 2017, 38 (7): 989- 1000
doi: 10.11990/jheu.201608067
[3]   代化, 张斌, 徐言哲 UUV动力电池发展现状与趋势[J]. 舰船科学技术, 2020, 42 (23): 155- 158
DAI Hua, ZHANG Bin, XU Yanzhe Current status and development trend of power batteries for UUV[J]. Ship Science and Technology, 2020, 42 (23): 155- 158
doi: 10.3404/j.issn.1672-7649.2020.12.031
[4]   荆有泽, 刘志伟 UUV用动力电池现状及其发展趋势[J]. 电源技术, 2019, 43 (6): 1073- 1076
JING Youze, LIU Zhiwei Current situation and development trend of power battery for UUV[J]. Power Technology, 2019, 43 (6): 1073- 1076
doi: 10.3969/j.issn.1002-087X.2019.06.048
[5]   HUANG D, CHEN Z, ZHENG C, et al A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature[J]. Energy, 2019, 185 (C): 847- 861
[6]   赵靖英, 胡劲, 张雪辉, 等 基于锂电池模型和分数阶理论的SOC-SOH联合估计[J]. 电工技术学报, 2023, 38 (17): 4551- 4563
ZHAO Jingying, HU Jin, ZHANG Xuehui, et al Joint estimation of the SOC-SOH based on lithium battery model and fractional order theory[J]. Transactions of China Electrotechnical Society, 2023, 38 (17): 4551- 4563
[7]   雷克兵, 陈自强 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报:工学版, 2021, 55 (10): 1978- 1985
LEI Kebing, CHEN Ziqiang Estimation of SOC of battery based on improved multi-innovation extended Kalman filter[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1978- 1985
[8]   段林超, 张旭刚, 张华, 等 基于二阶近似扩展卡尔曼滤波算法的锂离子电池SOC估计[J]. 中国机械工程, 2023, 34 (15): 1797- 1804
DUAN Linchao, ZHANG Xugang, ZHANG Hua, et al SOC estimation of lithium-ion battery based on second-order approximate extended Kalman filter[J]. China Mechanical Engineering, 2023, 34 (15): 1797- 1804
doi: 10.3969/j.issn.1004-132X.2023.15.004
[9]   WANG Y, CHENG Y, XIONG Y, et al Estimation of battery open-circuit voltage and state of charge based on dynamic matrix control-extended Kalman filter algorithm[J]. Journal of Energy Storage, 2022, 52 (A): 104860
[10]   DANG L, HUANG Y, ZHANG Y, et al Multi-kernel correntropy based extended Kalman filtering for state-of-charge estimation[J]. ISA Transactions, 2022, 129 (B): 271- 283
[11]   ZHANG S, ZHANG Q, LIU D, et al State-of-charge estimation for lithium-ion battery during constant current charging process based on model parameters updated periodically[J]. Energy, 2022, 257: 124770
[12]   HONKURA K, TAKAHASHI K, HORIBA T Capacity-fading prediction of lithium-ion batteries based on discharge curves analysis[J]. Journal of Power Sources, 2011, 196 (23): 10141- 10147
doi: 10.1016/j.jpowsour.2011.08.020
[13]   LI X, JIANG J, WANG L, et al A capacity model based on charging process for state of health estimation of lithium-ion batteries[J]. Applied Energy, 2016, 177: 537- 543
doi: 10.1016/j.apenergy.2016.05.109
[14]   WANG Z, ZENG S, GUO J, et al State of health estimation of lithium-ion batteries based on the constant voltage charging curve[J]. Energy, 2019, 167: 661- 669
[15]   周頔, 宋显华, 卢文斌, 等 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39 (1): 105- 111
ZHOU Di, SONG Xianhua, LU Wenbin, et al Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39 (1): 105- 111
[16]   BAI G, WANG P, HU C, et al A generic model-free approach for lithium-ion battery health management[J]. Applied Energy, 2014, 135: 247- 260
[17]   王志福, 罗崴, 闫愿, 等 基于多方法融合的锂离子电池SOC-SOH联合估计[J]. 北京理工大学学报, 2023, 43 (6): 575- 584
WANG Zhifu, LUO Wei, YAN Yuan, et al Joint SOC-SOH estimation for li-ion batteries based on multi-method fusion[J]. Transactions of Beijing Institute of Technology, 2023, 43 (6): 575- 584
[18]   YANG J, XIA B, HUANG W, et al Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J]. Applied Energy, 2018, 212: 1589- 1600
[19]   ZHAO Q, JIANG H, CHEN B, et al Research on the SOH prediction based on the feature points of incremental capacity curve[J]. Journal of the Electrochemical Society, 2021, 168 (11): 110554
doi: 10.1149/1945-7111/ac38f2
[20]   MAURES M, CAPITAINE A, DELÉTAGE J, et al Lithium-ion battery SOH estimation based on incremental capacity peak tracking at several current levels for online application[J]. Microelectronics and Reliability, 2020, 114: 113798
[21]   卢地华, 陈自强 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56 (3): 342- 352
LU Dihua, CHEN Ziqiang SOH estimation of lithium-ion batteries based on dual charging state[J]. Journal of Shanghai Jiaotong University, 2022, 56 (3): 342- 352
[22]   刘轶鑫, 张頔, 李雪, 等 基于SOC-OCV曲线特征的SOH估计方法研究[J]. 汽车工程, 2019, 41 (10): 1158- 1163
LIU Yixin, ZHANG Di, LI Xue, et al A research on SOH estimation method based on SOC-OCV curve characteristics[J]. Automotive Engineering, 2019, 41 (10): 1158- 1163
[1] Qing-wei ZHU,Qi-chao WU,Yi-dan XU,Xiao-li YU,Rui HUANG. Aging of nickel-cobalt-aluminum lithium-ion battery in different SOC intervals[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 666-674.
[2] Jian-bin LI,Ying-ying WU,Peng-yu LI,Xiao-feng ZHENG,Jian-an XU,Xiang-yu JU. TBM tunneling parameters prediction based on Locally Linear Embedding and Support Vector Regression[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1426-1435.
[3] Bao-qiang ZHU,Shu-hong WANG,Ze ZHANG,Peng-yu WANG,Fu-rui DONG. Prediction method of tunnel deformation based on time series and DEGWO-SVR model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2275-2285.
[4] Xue XIA,Zhen ZHAO,Jin-jie ZHANG,Liang TANG. Mechanical integrity of cylindrical automotive lithium-ion batteries and modules[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2134-2141.
[5] Shuai-lin WANG,Lei SHENG,Li-na QI,Yi-dong FANG,Kang LI,Lin SU. Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1986-1992.
[6] Ke-bing LEI,Zi-qiang CHEN. Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1978-1985.
[7] Jia-ming WU,Zi-qiang CHEN. Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1433-1439.
[8] Tian-zhong HU,Jian-bo YU. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1852-1864.
[9] CUI Ren-jie, MENG Tao, HUO Jun-hai, JIN Zhong-he. On-orbit calibration technique for residual magnetism fluctuation of micro-satellite[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2444-2450.
[10] CHEN Da wei, YAO Shuan bao, LIU Shao qing, GUO Di long. Inverse design for aerodynamic shape of high speed train nose[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 631-640.
[11] LI Nan, ZHAO Guang-zhou. State estimation of freeway based on traffic flow hybrid model[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1846-1850.