|
|
Robustness of multimodal passenger transport network in urban agglomeration considering complementary effect |
Fei MA( ),Xiaolin WEI,Qipeng SUN*( ),Qing LIU,Huiyan GOU |
School of Economics and Management, Chang’an University, Xi’an 710064, China |
|
|
Abstract A multimodal passenger transport network model of urban agglomeration was constructed based on complex network theory from the perspective of multiple complementary traffic modes in order to analyze the response ability of urban agglomeration passenger transport networks to emergencies. The gravity model was applied to establish rules for network performance calculation after node failure, and the robustness of the multimodal passenger transport network of urban agglomeration was measured. A dynamic complementary strength index based on robustness was introduced to quantify the complementary effect (CE) between passenger transport networks. The robustness when considering CE was compared, and the degree to which CE improves the robustness value was analyzed. A case study of Guanzhong Plain urban agglomeration was conducted. Results showed that the general railway network was the most robust to unexpected events, and the highway network was the least robust to unexpected events among the multimodal passenger transport networks in urban agglomerations. The robustness of the urban agglomeration multimodal passenger network was significantly improved when CE was considered regardless of the attack strategy. The sensitivity of high-speed rail network, rail network and highway network was decreased by 19.1%, 29.3%和22.0%, respectively.
|
Received: 31 May 2023
Published: 23 January 2024
|
|
Fund: 国家自然科学基金资助项目(72104034);陕西省自然科学基础研究计划资助项目(2022JM-423,2022JM-426);西安市社会科学规划基金重大资助项目(211423220227). |
Corresponding Authors:
Qipeng SUN
E-mail: mafeixa@chd.edu.cn;sunqip@chd.edu.cn
|
考虑互补效应的城市群多模式客运网络鲁棒性
为了分析城市群客运网络对突发事件的应对能力,从多种交通模式互补视角,基于复杂网络理论构建城市群多模式客运网络模型,应用引力模型建立节点失效后网络性能计算的规则,对城市群多模式客运网络的鲁棒性进行测度. 引入基于鲁棒性的动态互补强度指标,对客运网络间的互补效应(CE)进行量化. 对是否考虑CE时的鲁棒性进行对比,分析CE对鲁棒性的提升程度. 以关中平原城市群为例进行实例研究,结果表明,在城市群多模式客运网络中,普铁网应对突发事件时的鲁棒性最强,公路网最弱. 无论在何种攻击策略下,考虑CE时,城市群多模式客运网络的鲁棒性均有明显的提升,高铁网、普铁网和公路网的敏感度分别下降了19.1%、29.3%和22.0%.
关键词:
城市群,
多模式客运网络,
复杂网络理论,
鲁棒性,
互补效应
|
|
[1] |
LI M M, GUO R Z, LI Y, et al Distribution characteristics of the transportation network in China at the county level[J]. IEEE Access, 2019, 7: 49251- 49261
doi: 10.1109/ACCESS.2019.2910299
|
|
|
[2] |
HAN J, GAO M, SUN Y W Research on the measurement and path of urban agglomeration growth effect[J]. Sustainability, 2019, 11 (19): 5179
doi: 10.3390/su11195179
|
|
|
[3] |
马书红, 武亚俊, 陈西芳 城市群多模式交通网络结构韧性分析: 以关中平原城市群为例[J]. 清华大学学报: 自然科学版, 2022, 62 (7): 1228- 1235 MA Shuhong, WU Yajun, CHEN Xifang Structural resilience of multimodal transportation networks in urban agglomerations: a case study of Guanzhong Plain urban agglomeration network[J]. Journal of Tsinghua University: Science and Technology, 2022, 62 (7): 1228- 1235
|
|
|
[4] |
MA F, SHI W J, YUEN K F, et al Exploring the robustness of public transportation for sustainable cities: a double-layered network perspective[J]. Journal of Cleaner Production, 2020, 265: 121747
doi: 10.1016/j.jclepro.2020.121747
|
|
|
[5] |
OUYANG M, PAN Z Z, HONG L, et al Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China[J]. Reliability Engineering and System Safety, 2015, 142: 248- 257
doi: 10.1016/j.ress.2015.05.013
|
|
|
[6] |
马书红, 陈西芳, 武亚俊, 等 基于可达性的城市群交通网络公平性分析[J]. 交通运输系统工程与信息, 2022, 22 (6): 51- 59 MA Shuhong, CHEN Xifang, WU Yajun, et al Equity analysis of transportation networks in urban agglomerations based on accessibility[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (6): 51- 59
|
|
|
[7] |
李成兵, 李云飞, 吴鹏 基于多智能体的城市群客运网络脆弱性动态仿真[J]. 系统仿真学报, 2023, 35 (6): 1183- 1190 LI Chengbing, LI Yunfei, WU Peng Dynamic simulation of urban agglomeration passenger transport network vulnerability based on multi-agent[J]. Journal of System Simulation, 2023, 35 (6): 1183- 1190
|
|
|
[8] |
LIU S, YIN C S, CHEN D J, et al Cascading failure in multiple critical infrastructure interdependent networks of syncretic railway system[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (6): 5740- 5753
doi: 10.1109/TITS.2021.3057404
|
|
|
[9] |
MA F, LIU F, YUEN K F, et al Cascading failures and vulnerability evolution in Bus-Metro complex bilayer networks under rainstorm weather conditions[J]. International Journal of Environmental Research and Public Health, 2019, 16 (3): 329
doi: 10.3390/ijerph16030329
|
|
|
[10] |
侯兰功, 孙继平 复杂网络视角下的成渝城市群网络结构韧性演变[J]. 世界地理研究, 2022, 31 (3): 561- 571 HOU Langong, SUN Jiping Evalution of network structure resilience of Chengdu-Chongqing urban agglomeration from the perspective of complex networks[J]. World Regional Studies, 2022, 31 (3): 561- 571
doi: 10.3969/j.issn.1004-9479.2022.03.2020538
|
|
|
[11] |
肖明辉 基于区域攻击的城市公共交通互补网络脆弱性分析[J]. 信息通信, 2018, (8): 1- 5 XIAO Minghui The vulnerability analysis of urban complementary transit network under spatially localized failures[J]. Information and Communications, 2018, (8): 1- 5
|
|
|
[12] |
路庆昌, 崔欣, 徐标, 等 公交接驳场景下轨道交通网络脆弱性研究[J]. 中国安全科学学报, 2021, 31 (8): 141- 146 LU Qingchang, CUI Xin, XU Biao, et al Vulnerability research of rail transit network under bus connection scenarios[J]. China Safety Science Journal, 2021, 31 (8): 141- 146
|
|
|
[13] |
YANG H H, AN S Robustness evaluation for multi-subnet composited complex network of urban public transport[J]. Alexandria Engineering Journal, 2021, 60 (2): 2065- 2074
doi: 10.1016/j.aej.2020.12.016
|
|
|
[14] |
HONG L, ZHONG X, OUYANG M, et al Vulnerability analysis of public transit systems from the perspective of urban residential communities[J]. Reliability Engineering and System Safety, 2019, 189: 143- 156
doi: 10.1016/j.ress.2019.04.018
|
|
|
[15] |
LI T, RONG L L Spatiotemporally complementary effect of high-speed rail network on robustness of aviation network[J]. Transportation Research Part A-Policy and Practice, 2022, 155: 95- 114
doi: 10.1016/j.tra.2021.10.020
|
|
|
[16] |
LI T, RONG L L, YAN K S Vulnerability analysis and critical area identification of public transport system: a case of high-speed rail and air transport coupling system in China[J]. Transportation Research Part A: Policy and Practice, 2019, 127: 55- 70
doi: 10.1016/j.tra.2019.07.008
|
|
|
[17] |
FANG C, CHU Y Z, FU H R, et al On the resilience assessment of complementary transportation networks under natural hazards[J]. Transportation Research Part D-Transport and Environment, 2022, 109: 103331
doi: 10.1016/j.trd.2022.103331
|
|
|
[18] |
SUN X Q, WANDELT S Complementary strengths of airlines under network disruptions[J]. Safety Science, 2018, 103: 76- 87
doi: 10.1016/j.ssci.2017.11.010
|
|
|
[19] |
刘承良, 殷美元, 黄丽 基于多中心性分析的中国交通网络互补性的空间格局[J]. 经济地理, 2018, 38 (10): 21- 28 LIU Chengliang, YIN Meiyuan, HUANG Li Spatial pattern of complementarity between the three transport networks in China based on multiple centrality assessments[J]. Economic Geography, 2018, 38 (10): 21- 28
|
|
|
[20] |
LI T, RONG L L A comprehensive method for the robustness assessment of high-speed rail network with operation data: a case in China[J]. Transportation Research Part A: Policy and Practice, 2020, 132: 666- 681
doi: 10.1016/j.tra.2019.12.019
|
|
|
[21] |
马飞, 汪倩倩, 李永平, 等 生态安全约束下基于“交通-信息”流的城市群空间网络结构[J]. 长安大学学报: 自然科学版, 2022, 42 (5): 86- 95 MA Fei, WANG Qianqian, LI Yongping, et al Spatial network structure of urban agglomeration based on traffic-information flow under ecological security constraints[J]. Journal of Chang'an University: Natural Science Edition, 2022, 42 (5): 86- 95
|
|
|
[22] |
项昀, 徐铖铖, 于维杰, 等 基于人口迁徙大数据的城市对外交通客运方式优势出行距离研究[J]. 交通运输系统工程与信息, 2020, 20 (1): 241- 246 XIANG Yun, XU Chengcheng, YU Weijie, et al Dominant trip distance of urban external passenger transport mode based on big data of migration.[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (1): 241- 246
|
|
|
[23] |
胡钢, 牛琼, 王琴, 等 时序多层网络熵值结构洞节点重要性建模[J]. 浙江大学学报: 工学版, 2023, 57 (4): 719- 725 HU Gang, NIU Qiong, WANG Qin, et al Modeling of node importance in entropy-value structured hole of temporal multilayer network[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (4): 719- 725
|
|
|
[24] |
周传华, 操礼春, 周家亿, 等 图卷积融合计算时效网络节点重要性评估分析[J]. 浙江大学学报: 工学版, 2023, 57 (5): 930- 938 ZHOU Chuanhua, CAO Lichun, ZHOU Jiayi, et al Identification of critical nodes in temporal networks based on graph convolution union computing[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (5): 930- 938
|
|
|
[25] |
王永岗, 王龙健, 刘志岗, 等 多模式复合交通网脆弱性测度[J]. 交通运输工程学报, 2023, 23 (1): 195- 207 WANG Yonggang, WANG Longjian, LIU Zhigang, et al Vulnerability metrics of multimodal composite transportation network[J]. Journal of Traffic and Transportation Engineering, 2023, 23 (1): 195- 207
doi: 10.19818/j.cnki.1671-1637.2023.01.015
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|