Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (10): 2011-2017    DOI: 10.3785/j.issn.1008-973X.2023.10.010
    
Target recognition based on gated feature fusion and center loss
Jian-wen MO(),Jin LI,Xiao-dong CAI*(),Jin-wei CHEN
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
Download: HTML     PDF(1598KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A target identification method based on gated feature fusion with center loss was proposed, aiming at the problems of target activity, light and camera distance. Gated feature fusion was designed to compensate for the decrease in identity recognition accuracy when the single feature information was lost. Gated structure guidance network evaluated the contribution of input facial and pedestrian features, and weights were assigned according to the contribution to produce a more recognizable identity feature. By adding a center loss function, the intra-class distance of the features was reduced under the guidance network, making the features more discriminative. The final recognition accuracy of the proposed method on the self-constructed dataset could reach up to 76.35%, which was better than that of single-feature recognition methods and multiple fusion methods. The average recognition accuracy could be improved by 2.63% with the proposed fusion loss function.



Key wordsidentification      surveillance scene      feature fusion      gated mechanism      center distance loss     
Received: 22 September 2022      Published: 18 October 2023
CLC:  TP 391  
Fund:  国家自然科学基金资助项目(62001133, 62177012); 广西创新驱动发展专项项目(AA20302001);广西无线宽带通信与信号处理重点实验室基金资助项目(GXKL06200114)
Corresponding Authors: Xiao-dong CAI     E-mail: Mo_jianwen@126.com;caixiaodong@guet.edu.cn
Cite this article:

Jian-wen MO,Jin LI,Xiao-dong CAI,Jin-wei CHEN. Target recognition based on gated feature fusion and center loss. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2011-2017.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.10.010     OR     https://www.zjujournals.com/eng/Y2023/V57/I10/2011


基于门控特征融合与中心损失的目标识别

针对目标活动、光线及摄像头距离等问题,提出一种基于门控特征融合与中心损失的目标识别方法. 门控特征融合是为了弥补单一特征信息丢失时,身份识别准确率下降的缺陷. 门控结构指导网络对输入的人脸、行人特征进行贡献量评估, 再根据贡献量去分配权值,组合产生识别性更强的身份特征. 通过添加中心损失函数,在引导网络下减少了特征的类内距离,使得特征更具判别性. 实验结果表明,在自建数据集上所提方法的最终识别准确率最高可以达到76.35%,优于单特征识别方法以及多种融合方法,使用所提的融合损失函数后,平均识别准确率可提高2.63%.


关键词: 身份识别,  监控场景,  特征融合,  门控机制,  中心距离损失 
Fig.1 GFFN model frame
Fig.2 Input module for GFFN
Fig.3 Map of multiple feature fusion methods
Fig.4 Connection diagram of gated classification loss and center distance loss
Fig.5 Dataset of sample G-campus1392
数据集 $ {N_{\text{u}}} $
训练集 测试集
Randomdata1 15 138 16 486 3 480
Randomdata2 15 846 15 778 3 480
Randomdata3 15 354 16 270 3 480
Tab.1 Number of images in G-campus1392 dataset
方法 Randomdata1 Randomdata2 Randomdata3
ACC/% mAP/% ACC/% mAP/% ACC/% mAP/%
人脸分类 40.659 35.532 41.615 36.089 39.447 34.389
行人分类 55.265 52.275 55.451 51.527 53.737 50.626
特征相加融合 59.878 55.585 60.235 55.961 57.367 54.146
首尾拼接融合 61.749 57.890 61.313 57.091 59.939 55.851
软注意力融合 64.582 59.835 63.519 58.936 62.698 56.261
门控特征融合 73.893 69.342 73.305 68.583 71.807 67.280
Tab.2 Comparison of results of multiple identification methods
方法 Randomdata1 Randomdata2 Randomdata3
L1 L2 L1 L2 L1 L2
人脸分类 40.659 43.989 41.615 44.219 39.447 42.612
行人分类 55.265 61.197 55.451 60.698 53.737 59.213
特征相加融合 59.878 65.235 60.235 67.593 57.367 66.326
首尾拼接融合 61.749 71.430 61.313 70.681 59.939 69.490
软注意力融合 64.582 72.298 63.519 71.796 62.698 71.008
门控特征融合 73.893 75.798 73.305 76.347 71.807 74.714
Tab.3 ACC value of classification network after increasing center distance loss %
方法 Randomdata1 Randomdata2 Randomdata3
L1 L2 L1 L2 L1 L2
人脸分类 35.532 37.925 36.089 37.993 34.389 36.665
行人分类 52.275 56.777 51.527 56.182 50.626 54.934
特征相加融合 55.585 61.623 55.961 61.962 54.146 59.247
首尾拼接融合 57.890 65.642 57.091 64.684 55.851 62.271
软注意力融合 59.835 67.234 58.936 66.039 56.261 64.915
门控特征融合 69.342 71.461 68.583 71.257 67.280 69.715
Tab.4 mAP value of classification network after increasing center distance loss %
Fig.6 Error samples of proposed method
[1]   WANG K, WANG S, ZHANG P, et al. An efficient training approach for very large scale face recognition [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 4083-4092.
[2]   ZHU H, KE W, LI D, et al. Dual cross-attention learning for fine-grained visual categorization and object re-identification [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 4692-4702.
[3]   YE F, YANG J A deep neural network model for speaker identification[J]. Applied Sciences, 2021, 11 (8): 3603
doi: 10.3390/app11083603
[4]   YE M, SHEN J, SHAO L Visible-infrared person re-identification via homogeneous augmented tri-modal learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 16: 728- 739
[5]   QIAN Y, CHEN Z, WANG S Audio visual deep neural network for robust person verification[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 1079- 1092
doi: 10.1109/TASLP.2021.3057230
[6]   SARANGI P P, NAYAK D R, PANDA M, et al A feature-level fusion based improved multimodal biometric recognition system using ear and profile face[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13: 1867- 1898
[7]   GUO W, WANG J, WANG S Deep multimodal representation learning: a survey[J]. IEEE Access, 2019, 7: 63373- 63394
doi: 10.1109/ACCESS.2019.2916887
[8]   AREVALO J, SOLORIO T, MONTESYGOMEZ M, et al Gated multimodal networks[J]. Neural Computing and Applications, 2020, 32: 10209- 10228
doi: 10.1007/s00521-019-04559-1
[9]   DICKSON M C, BOSMAN A S, MALAN K M. Hybridised loss functions for improved neural network generalisation [C]// Pan African Artificial Intelligence and Smart Systems: First International Conference. Cham: SIP, 2022: 169-181.
[10]   WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition [C]// Computer Vision ECCV 2016: 14th European Conference. Netherlands: SIP, 2016: 499-515.
[11]   DENG J, GUO J, XUE N, et al. Arcface: Additive angular margin loss for deep face recognition [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4690-4699.
[12]   SUN Y, ZHENG L, YANG Y, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline) [C]// Proceedings of the European Conference on Computer Vision. Munich: [s. n. ], 2018: 480-496.
[1] Jun HAN,Xiao-ping YUAN,Zhun WANG,Ye CHEN. UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1224-1233.
[2] Chuan-hua ZHOU,Li-chun CAO,Jia-yi ZHOU,Feng ZHAN. Identification of critical nodes in temporal networks based on graph convolution union computing[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 930-938.
[3] Bo WANG,Chi ZHANG,Shi-peng REN,Chang-he LIU,Zi-long XIE. Expressway driving risk identification method based on velocity risk potential field[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 997-1008.
[4] Qing-lin AI,Jing-rui CUI,Bing-hai LV,Tong TONG. Surface defect detection method for bearing drum-shaped rollers based on fusion transformation of defective area[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1009-1020.
[5] Jian-zhao ZHANG,Ji-chang GUO,Yu-dong WANG. Underwater image enhancement algorithm via fusing reverse medium transmission map[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 921-929.
[6] Yu-ting SU,Rong-xuan LU,Wei ZHANG. Vehicle re-identification algorithm based on attention mechanism and adaptive weight[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 712-718.
[7] Kun LIU,Xiao-song YANG. Surface defect identification of cross scene strip based on unsupervised domain adaptation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 477-485.
[8] Fan YANG,Bo NING,Huai-qing LI,Xin ZHOU,Guan-yu LI. Multimodal image retrieval model based on semantic-enhanced feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 252-258.
[9] Wei DU,Juan-juan REN,Shu-yi ZHANG,Jun-hong DU,Shi-jie DENG. Research progress on interlayer damage identification technology of slab track structures[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 353-366.
[10] Jian-sha LU,Qin BAO,Hong-tao TANG,Yi-ping SHAO,Wen-bin ZHAO. Optimal tag selection method for device-free human tracking system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 415-425.
[11] Qing-lin AI,Jia-hao YANG,Jing-rui CUI. Small target pedestrian detection based on adaptive proliferation data enhancement and global feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1933-1944.
[12] Ming XU,Di ZHANG,Cheng RONG,Li-rong SU,Wan-qiang WANG. Modified Bouc-Wen based hysteresis modeling of flexible joint actuator[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1560-1567, 1621.
[13] Xiao-hang LIU,Shan-suo ZHENG,Yu HUANG,Shu-qing DONG,Feng YANG,Jin-qi DONG. Seismic reliability analysis of substation system based on adjacency matrix[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1495-1503.
[14] Shi-lin ZHANG,Hong-nan GUO,Xuan LIU. Person and vehicle re-identification based on energy model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1416-1424.
[15] Chang-yuan LIU,Xian-ping HE,Xiao-jun BI. Efficient network vehicle recognition combined with attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 775-782.