Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (5): 921-929    DOI: 10.3785/j.issn.1008-973X.2023.05.008
    
Underwater image enhancement algorithm via fusing reverse medium transmission map
Jian-zhao ZHANG(),Ji-chang GUO*(),Yu-dong WANG
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Download: HTML     PDF(3081KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An end-to-end underwater image enhancement algorithm via fusing reverse medium transmission map was proposed to resolve the problem of quality degradation in the underwater images. The original RGB map and the reverse medium transmission map obtained by the traditional method were fed into two encoders of the proposed two-stream convolutional neural network. The information of two images was fully integrated through the cross-modality feature fusion module, and the network could learn the characteristics of underwater optical images well. The feature expression capabilities could be further strengthened through the feature enhancement modules. The decoder and encoder were connected via a residual decoding module to supply the RGB features. The underwater image enhancement algorithm via fusing reverse medium transmission map processes information from coarse to fine through cross-modality and cross-scale information fusion, and finally outputs an enhanced RGB image. The experimental results showed that the proposed algorithm could effectively improve the visual quality of underwater images. Taking into account both subjective evaluation and objective evaluation, the proposed algorithm was better than the six competing algorithms of white balance WB and histogram equalization HE, Water-Net, UGAN, UWCNN, Ucolor.



Key wordsreverse medium transmission map      underwater image enhancement      underwater optical imaging      two-stream convolutional neural network      feature fusion     
Received: 23 May 2022      Published: 09 May 2023
CLC:  TP 391  
Fund:  国家自然科学基金资助项目(62171315)
Corresponding Authors: Ji-chang GUO     E-mail: 2020234133@tju.edu.cn;jcguo@tju.edu.cn
Cite this article:

Jian-zhao ZHANG,Ji-chang GUO,Yu-dong WANG. Underwater image enhancement algorithm via fusing reverse medium transmission map. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 921-929.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.05.008     OR     https://www.zjujournals.com/eng/Y2023/V57/I5/921


基于融合逆透射率图的水下图像增强算法

针对水下图像质量退化严重的问题,提出一种端到端的基于融合逆透射率图的水下图像增强算法. 将原始RGB图像和基于传统方法得到的逆透射率图分别输入到双流卷积神经网络的2个编码器中;通过跨模态特征融合模块使得2种图像信息充分融合互补,让网络更好地学习到水下光学成像的特点;通过特征增强模块,增强特征的表达能力;通过残差解码模块连接解码器和编码器,以补充和丰富RGB特征. 通过逆透射率图的水下图像增强算法以及跨模态跨尺度的信息融合,由粗到细地进行逐级处理,最终输出增强后的RGB图像. 实验结果表明,所提算法能够有效地提升水下图像视觉质量. 综合主观评价和客观评价,所提算法优于所对比的白平衡WB、直方图均衡化HE、Water-Net、UGAN、UWCNN、Ucolor 6种算法.


关键词: 逆透射率图,  水下图像增强,  水下光学成像,  双流卷积神经网络,  特征融合 
Fig.1 Architecture of underwater image enhancement network via fusing reverse medium transmission map
Fig.2 Feature extractor of reverse medium transmission stream
Fig.3 Proposed cross-modality feature fusion module
Fig.4 Proposed feature enhancement module
Fig.5 Subjective visual comparison of each algorithm
算法 MSE ↓ PSNR↑ SSIM↑ Entropy↑ UCIQE↑ UIQM↑
原图 4 144.966 6 14.494 5 0.695 4 6.090 0 0.494 2 1.882 9
WB[14] 4 246.773 4 14.517 4 0.686 2 5.981 7 0.477 4 1.860 5
HE[15] 3 885.061 3 14.303 6 0.737 2 7.141 3 0.604 4 2.461 3
Water-Net[13] 3 417.155 3 15.761 2 0.768 7 6.787 9 0.540 5 2.409 3
UGAN[10] 2 266.487 8 16.263 6 0.662 5 7.121 4 0.559 7 3.020 2
UWCNN[12] 2 159.017 0 17.045 3 0.767 0 6.530 7 0.549 4 4.125 1
Ucolor[17] 723.786 5 23.239 3 0.871 8 7.260 6 0.513 2 2.575 7
URMT-Net 636.919 4 22.933 8 0.886 2 7.355 7 0.564 0 2.868 5
Tab.1 Objective evaluation indexes of each algorithm on synthesized datasets
算法 MSE ↓ PSNR↑ SSIM↑ Entropy↑ UCIQE↑ UIQM↑
原图 1 324.763 9 18.258 0 0.815 0 6.745 0 0.504 4 2.840 7
WB[14] 1 455.735 0 17.926 1 0.804 1 6.761 9 0.542 9 2.873 1
HE[15] 1 164.861 4 18.863 8 0.874 9 7.817 3 0.664 0 3.620 7
Water-Net[13] 838.973 3 21.394 8 0.894 8 7.151 8 0.580 7 3.587 2
UGAN[10] 558.296 5 21.303 1 0.769 1 7.466 8 0.616 2 4.015 7
UWCNN[12] 2 804.303 1 15.089 1 0.710 8 6.309 1 0.483 7 2.983 2
Ucolor[17] 519.691 7 22.752 8 0.906 7 7.242 1 0.569 3 4.563 4
URMT-Net 489.336 1 22.305 0 0.902 1 7.484 7 0.599 0 3.786 2
Tab.2 Objective evaluation indexes of each algorithm on real datasets
Fig.6 Subjective visual comparison of ablation experiment
算法 MSE ↓ PSNR↑ SSIM↑ Entropy↑ UCIQE↑ UIQM↑
无特征融合模块 674.632 2 22.567 8 0.882 6 7.347 2 0.559 0 2.870 2
无特征增强模块 678.910 3 22.576 5 0.881 4 7.368 9 0.562 2 2.879 1
无残差解码模块 722.180 6 22.336 1 0.879 0 7.332 0 0.561 8 2.857 9
URMT-Net 636.919 4 22.933 8 0.886 2 7.355 7 0.564 0 2.868 5
Tab.3 Objective evaluation indexes of ablation experiment on synthesized datasets
算法 MSE ↓ PSNR↑ SSIM↑ Entropy↑ UCIQE↑ UIQM↑
无特征融合模块 486.392 1 22.090 4 0.901 1 7.450 7 0.590 2 3.806 7
无特征增强模块 531.255 5 21.826 0 0.897 8 7.441 7 0.588 3 3.742 0
无残差解码模块 515.029 9 22.258 4 0.899 7 7.452 9 0.590 8 3.804 3
URMT-Net 489.336 1 22.305 0 0.902 1 7.484 7 0.599 0 3.786 2
Tab.4 Objective evaluation indexes of ablation experiment on real datasets
[1]   IQBAL K, ODETAYO M, JAMES A, et al. Enhancing the low quality images using unsupervised colour correction method [C]// Proceedings of IEEE International Conference on Systems, Man and Cybernetics: IEEE, 2010: 1703-1709.
[2]   ANCUTI C, ANCUTI C O, HABER T. Enhancing underwater images and videos by fusion [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence RI: IEEE, 2012: 81-88.
[3]   HITAM M S, KUALA T, YUSSOF W, et al. Mixture contrast limited adaptive histogram equalization for underwater image enhancement [C]// Proceedings of International Conference on Computer Applications Technology. Sousse, Tunisia, 2013: 1-5.
[4]   DREWSJR P, NASCIMENTO E R, BOTELHO S S C, et al Underwater depth estimation and image restoration based on singleimages[J]. IEEE Computer Graphics and Applications, 2016, 36 (2): 24- 35
doi: 10.1109/MCG.2016.26
[5]   LI C, GUO J, CHEN S, et al. Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging [C]// IEEE International Conference on Image Processing (ICIP). Phoenix: IEEE, 2016: 1993-1997.
[6]   LI C, GUO J, CONG R, et al Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25 (12): 5664- 5677
doi: 10.1109/TIP.2016.2612882
[7]   AKKAYNAK D, TREIBITZ T. A revised underwater image formation model [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 6723-6732.
[8]   AKKAYNAK D, TREIBITZ T. Sea-Thru: a method for removing water from underwater images [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 1682-1691.
[9]   LI J, SKINNER K A, EUSTICE M, et al WaterGAN: unsupervised generative networkto enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2018, 3 (1): 387- 394
[10]   FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks [C]// IEEE International Conference on Robotics and Automation (ICRA). Brisbane: IEEE, 2018: 7159-7165.
[11]   ANWAR S, LI C, PORIKLI F. Deep underwater image enhancemen [EB/OL]. [2018-07-10]. https://arxiv.org/abs/1807.03528.
[12]   LI C, ANWAR S, PORIKLI F Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2019, 98 (1): 107038
[13]   LI C, GUO C, REN W, et al An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376- 4389
doi: 10.1109/TIP.2019.2955241
[14]   LIU Y C, CHAN W H, CHEN Y Q Automatic white balance for digital still camera[J]. IEEE Transactions on Consumer Electronics, 1995, 41 (3): 460- 466
doi: 10.1109/30.468045
[15]   HUMMEL R Image enhancement by histogram transformation[J]. IEEE Computer Graphics and Image Processing, 1977, 6 (2): 184- 195
doi: 10.1016/S0146-664X(77)80011-7
[16]   WANG Y, GUO J, GAO H UIEC^2-Net: CNN-based underwater image enhancement using two color space[J]. Signal Processing: Image Communication, 2021, 96: 116250
doi: 10.1016/j.image.2021.116250
[17]   LI C, ANWAR S, HOU J, et al Underwater image enhancement via medium transmission-guided multi-color space embedding[J]. IEEE Transactions on Image Processing, 2021, 30: 4985- 5000
doi: 10.1109/TIP.2021.3076367
[18]   LU H, LI Y, ZHANG L Contrast enhancement for images in turbid water[J]. Journal of the Optical Society of America A, 2015, 32 (5): 886- 893
doi: 10.1364/JOSAA.32.000886
[19]   PENG Y T, K CAO, P C COSMAN Generalization of the dark channel prior for single image restoration[J]. IEEE Transactions on Image Processing, 2018, 27 (6): 2856- 2868
doi: 10.1109/TIP.2018.2813092
[20]   LI C, CONG R, PIAO Y, et al. RGB-D salient object detection with cross-modality modulation and selection [C]// European Conference on Computer Vision (ECCV). Cham: Springer, 2020: 225-241.
[21]   HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
[22]   ZHAO H, GALLO O, FROSIO I, et al Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 3 (1): 47- 57
[23]   JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-timestyle transfer and super-resolution [C]// European Conference on Computer Vision (ECCV). Cham: Springer, 2016: 694-711.
[24]   LIU W, RABINOVICH A, BERG A C, Parsenet: looking wider to see better [EB/OL]. [2015-06-15]. https://arxiv.org/abs/1506.04579.
[25]   PANETTA K, GAO C, AGAIAN S Human-visual-system inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41 (3): 541- 551
doi: 10.1109/JOE.2015.2469915
[1] Fan YANG,Bo NING,Huai-qing LI,Xin ZHOU,Guan-yu LI. Multimodal image retrieval model based on semantic-enhanced feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 252-258.
[2] Na ZHANG,Xu-lei QI,Xiao-an BAO,Biao WU,Xiao-mei TU,Yu-ting JIN. Single-stage object detection algorithm based on optimizing position prediction[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 783-794.
[3] Pei-zhi WEN,Jun-mou CHEN,Yan-nan XIAO,Ya-yuan WEN,Wen-ming HUANG. Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 213-224.
[4] Xin-yu HUANG,Fan YOU,Pei ZHANG,Zhao ZHANG,Bai-li ZHANG,Jian-hua LV,Li-zhen XU. Silent liveness detection algorithm based on multi classification and feature fusion network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 263-270.
[5] Yun-zuo ZHANG,Wei GUO,Zhao-quan CAI,Wen-bo LI. Remote sensing image target detection combining multi-scale and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2215-2223.
[6] Ming LI,Li-juan DUAN,Wen-jian WANG,Qing EN. Brain functional connections classification method based on significant sparse strong correlation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2232-2240.
[7] Ze-xin XU,Li-juan DUAN,Wen-jian WANG,Qing EN. Code vulnerability detection method based on contextual feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2260-2270.
[8] Dong-jie YANG,Xian-jun GAO,Shu-hao RAN,Guang-bin ZHANG,Ping WANG,Yuan-wei YANG. Building extraction based on multiple multiscale-feature fusion attention network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1924-1934.
[9] Zhi-chao CHEN,Hai-ning JIAO,Jie YANG,Hua-fu ZENG. Garbage image classification algorithm based on improved MobileNet v2[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1490-1499.
[10] Yue-lin CHEN,Wen-jing TIAN,Xiao-dong CAI,Shu-ting ZHENG. Text matching model based on dense connection networkand multi-dimensional feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2352-2358.
[11] Xue-yun CHEN,Jin XIA,Ke DU. Overhead transmission line detection based on multiple linear-feature enhanced detector[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2382-2389.
[12] Pu ZHENG,Hong-yang BAI,Wei LI,Hong-wei GUO. Small target detection algorithm in complex background[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1777-1784.
[13] Deng-wen ZHOU,Jin-yue TIAN,Lu-yao MA,Xiu-xiu SUN. Lightweight image semantic segmentation based on multi-level feature cascaded network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1516-1524.
[14] Hong LIN,Yao-yao LU. Scale differentiated text detection method focusing on hard examples[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1506-1516.
[15] Xiang-hao CHENG,Fei-peng DA,Liang WANG. Feature fusion based constrained local model for three-dimensional facial landmark localization[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 770-776.