Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (5): 997-1008    DOI: 10.3785/j.issn.1008-973X.2023.05.016
    
Expressway driving risk identification method based on velocity risk potential field
Bo WANG1,2,3(),Chi ZHANG1,2,*(),Shi-peng REN4,Chang-he LIU1,Zi-long XIE1
1. School of Highway, Chang’an University, Xi’an 710064, China
2. Engineering Research Center of Highway Infrastructure Digitalization, Ministry of Education, Xi’an 710000, China
3. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
4. Guangdong Communication Planning and Design Institute Group Co. Ltd, Guangzhou 510630, China
Download: HTML     PDF(1671KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The vehicle speed data on road segments and cross-sections were collected to achieve the spatial localization, classification, and quantification of driving risk at the macro scale. The influence of speed change and road alignment on driving risk was comprehensively considered based on the analysis of the spatial distribution characteristics of the vehicle speed. The safety potential field theory was introduced, the velocity risk potential field model was established, and a macro-identification method for expressway driving risk was proposed. Then the case analysis and validity check were conducted. The results showed that the proportions of lateral, longitudinal and spatial high-risk sections identified in the verification sections were 7.74%, 12.88%, and 24.33% respectively. The accidents in these areas accounted for 31.21%, 31.55% and 43.26% of the total accidents respectively. The intensity of the speed risk potential field and the distribution of traffic accidents have strong regularity, which can represent the composition and severity of the traffic risk in the road section to a certain extent. The velocity variation of expressway traffic flow reflects the road safety states to a certain extent. Taking into account the impact of road alignment index on driving risk, the change in vehicle velocity can be used to identify driving risk precisely.



Key wordsexpressway      driving risk      risk identification      velocity distribution      risk potential field     
Received: 07 May 2022      Published: 09 May 2023
CLC:  U 412  
Fund:  国家重点研发计划资助项目(2020YFC1512005);四川省科技计划资助项目(2022YFG0048);四川省交通运输厅科技项目(2019-ZL-12, 2022-ZL-04); 山西省重点研发计划资助项目(202102020101014)
Corresponding Authors: Chi ZHANG     E-mail: wb1010110wb@chd.edu.cn;zhangchi@chd.edu.cn
Cite this article:

Bo WANG,Chi ZHANG,Shi-peng REN,Chang-he LIU,Zi-long XIE. Expressway driving risk identification method based on velocity risk potential field. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 997-1008.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.05.016     OR     https://www.zjujournals.com/eng/Y2023/V57/I5/997


基于速度风险势场的高速公路行车风险甄别方法

为了在宏观尺度下实现行车风险的空间定位、分类和量化,收集了路段和断面的车辆速度数据. 在分析速度空间分布特征的基础上,综合考虑速度变化和道路线形对行车风险的影响.引入安全势场理论,建立速度风险势场模型,提出高速公路行车风险宏观甄别方法,最后进行实例分析与有效性验证. 结果表明:在验证路段中甄别出的侧向、纵向和空间高风险路段占比分别为7.74%、12.88%、24.33%,区域内发生的事故占总事故的比例分别为31.21%、31.55%、43.26%. 速度风险势场强度和交通事故分布具有较强的规律性,能够在一定程度上表征路段行车风险构成和严重程度. 高速公路交通流速度波动在一定程度上反映道路安全状态,考虑到道路线形指标对行车风险的影响,车辆速度的变化可用于准确甄别行车风险.


关键词: 高速公路,  行车风险,  风险甄别,  速度分布,  风险势场 
序号 断面桩号 车牌号 车辆类型 T/s 行驶方向 v/(km·h?1) 车道号
1 K2084 川D602** 大货车 20200223000246 由南向北 58 2
2 K2084 川U676** 大型客车 20200223000311 由南向北 61 2
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
124216 K2114 晋KH16** 大型客车 20200322235935 由北向南 61 2
Tab.1 Cross section monitoring data of expressway in Southwest China
序号 案发日期 公里桩号 车型 伤亡人数 事故类型
轻伤 重伤 死亡
1 2017-9-24 K2094+719 轿车 0 0 0 单车事故
2 2017-9-30 K2094+473 轿车 0 0 0 追尾
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
438 2020-12-20 K2105+472 轿车 0 0 0 单车事故
439 2020-12-24 K2120+200 轿车 0 0 0 单车事故
Tab.2 Accident data of expressway in Southwest China
Fig.1 Comparison of vehicle speed data from Baidu POI and HD bayonet
断面 车道 $\bar v$/ (km·h?1) ${R_{{\text{lane}}}}$ sd
K2084 内侧 66.50 0.847 6.43
外侧 56.36 6.80
K2088 内侧 66.12 0.853 6.77
外侧 56.43 6.75
K2110 内侧 70.93 0.841 8.35
外侧 59.67 7.68
K2114 内侧 69.83 0.838 5.63
外侧 58.53 5.86
Tab.3 Cross section vehicle speed statistics
Fig.2 Time and space distribution characteristics analysis of vehicle speed on road cross-sections
Fig.3 Distribution of traffic velocity gradients and traffic accidents
Fig.4 Distribution of vertical slope and traffic accidents
Fig.5 Distribution of road horizontal curvature parameters and traffic accidents
Fig.6 Conceptual map of highway velocity risk potential field
车道类别 φx
左边线 内侧车道 车道分界线 中间车道 外侧车道 右边线
双向四车道 0.900 1.000 0.925 0.925 0.850 0.800
双向六车道 0.900 1.000 0.950 0.825 0.900 0.750 0.700
Tab.4 Value table of lateral distribution coefficient of velocity potential energy
Fig.7 Temporal distribution statistics of vehicle speed variation coefficient for cross-section K2084
序号 起点桩号 终点桩号 平面线形 R/m α $ \bar i $/% β
1 K2064+140.000 K2065+174.558 圆曲线 800 3.13 ?2.19 1.19
2 K2065+175.558 K2065+200.000 缓和曲线 ? 1.00 ?2.19 1.19
3 K2065+200.000 K2065+295.558 缓和曲线 ? 1.00 2.12 1.00
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
198 K2094+000.000 K2094+140.000 直线 ? 1.00 ?3.20 2.20
Tab.5 Calculation table of lateral and longitudinal risk impact factors for road section K2064+140 to K2094+140
Fig.8 Three velocity risk potential fields and distribution of vehicle traffic accidents on K2064+140~K2094+140 section
Fig.9 Three velocity risk potential fields and distribution of vehicle traffic accidents on K2094+140~K2130+640 section
类别 阈值 高风险路段占比/% 事故比例/% 总体事故比例/% 甄别效益比
侧向风险事故 纵向风险事故 形态不明事故
Ex 75.5 7.74 21.43 ? 34.9 31.21 4.03
Ey 74.6 12.88 ? 34.21 30.2 31.55 2.45
Ev 106.8 24.33 32.14 43.42 47.65 43.26 1.78
Tab.6 Comparison of high-risk road section identification effects based on three velocity risk potential field intensities
[1]   中华人民共和国国务院安全生产委员会. 国务院安全生产委员会关于印发道路交通安全“十三五”规划的通知[A/OL]. [2017-08-08] (2022-08-22). https://www.mem.gov.cn/gk/gwgg/agwzlfl/tz_01/201709/t20170907_235227.shtml.
[2]   MA Y, MENG H, CHEN S, et al Predicting traffic conflicts for expressway diverging areas using vehicle trajectory data[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146 (3): 04020003
doi: 10.1061/JTEPBS.0000320
[3]   SOLOMON D. Accidents on main rural highways related to speed, driver, and vehicle[R]. United States: Bureau of Public Roads, 1970: 1-44.
[4]   陈雨人, 付云天, 汪凡 基于支持向量回归的视距计算模型建立和应用[J]. 中国公路学报, 2018, 31 (4): 105- 113
CHEN Yu-ren, FU Yun-tian, WANG Fan Establishment and application of sight distance computing model based on support vector regression[J]. China Journal of Highway and Transport, 2018, 31 (4): 105- 113
doi: 10.3969/j.issn.1001-7372.2018.04.013
[5]   ADELL E, VÁRHELYI A, DALLA F M The effects of a driver assistance system for safe speed and safe distance–a real-life field study[J]. Transportation Research Part C: Emerging Technologies, 2011, 19 (1): 145- 155
doi: 10.1016/j.trc.2010.04.006
[6]   张驰, 孟良, 汪双杰, 等 高速公路曲线路段小客车制动行为侧滑风险仿真分析[J]. 中国公路学报, 2015, 28 (12): 134- 142
ZHANG Chi, MENG Liang, WANG Shuang-jie, et al Sideslip risk simulation analysis of passenger car braking behavior on expressway curved sections[J]. Transportation Research Part C: Emerging Technologies, 2015, 28 (12): 134- 142
doi: 10.3969/j.issn.1001-7372.2015.12.019
[7]   YANG H, OZBAY K Estimation of traffic conflict risk for merging vehicles on highway merge section[J]. Transportation Research Record, 2011, 2236 (1): 58- 65
doi: 10.3141/2236-07
[8]   WANG X, WANG X Speed change behavior on combined horizontal and vertical curves: driving simulator-based analysis[J]. Accident Analysis and Prevention, 2018, 119 (1): 215- 224
[9]   AARTS L, VAN S I Driving speed and the risk of road crashes: a review[J]. Accident Analysis and Prevention, 2006, 38 (2): 215- 224
doi: 10.1016/j.aap.2005.07.004
[10]   YU R, QUDDUS M, WANG X, et al Impact of data aggregation approaches on the relationships between operating speed and traffic safety[J]. Accident Analysis and Prevention, 2018, 120 (1): 304- 310
[11]   WU H Comparing Google maps and uber movement travel time data[J]. Findings, 2019, (1): 5115
[12]   WOLF M T, BURDICK J W. Artificial potential functions for highway driving with collision avoidance [C]// 2008 IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008: 3731-3736.
[13]   WOO H, JI Y, KONO H, et al Lane-change detection based on vehicle-trajectory prediction[J]. IEEE Robotics and Automation Letters, 2017, 2 (2): 1109- 1116
doi: 10.1109/LRA.2017.2660543
[14]   陶鹏飞, 金盛, 王殿海 基于人工势能场的跟驰模型[J]. 东南大学学报:自然科学版, 2011, 41 (4): 854- 858
TAO Peng-fei, JIN Sheng, WANG Dian-hai Car-following model based on artificial potential field[J]. Journal of Southeast University: Natural Science Edition, 2011, 41 (4): 854- 858
[15]   WANG J, WU J, ZHENG X, et al Driving safety field theory modeling and its application in pre-collision warning system[J]. Transportation Research Part C: Emerging Technologies, 2016, 72 (1): 306- 324
[16]   吴剑. 考虑人-车-路因素的行车风险评价方法研究[D]. 北京: 清华大学, 2015: 1-68.
WU Jian. Research on driver-vehicle-road factors considered driving risk evaluation method [D]. Beijing: Tsinghua University, 2015: 1-68.
[17]   SHOARIANSATTARI K, POWELL D Measured vehicle flow parameters as predictors in road traffic accident studies[J]. Traffic Engineering and Control, 1987, 28 (6): 328- 329
[18]   华杰工程咨询有限公司. 公路项目安全性评价规范: JTG B05—2015 [S]. 北京: 人民交通出版社, 2015.
[19]   ZHU Z, LU Y, FU C, et al Research on the safety audit methods for two-lane highway based on HRV[J]. Mathematical Problems in Engineering, 2014, (1): 308028
[20]   陈昭明, 徐文远 基于负二项分布的高速公路交通事故影响因素分析[J]. 交通信息与安全, 2022, 40 (1): 28- 35
CHEN Shao-ming, XU Wen-yuan An analysis of factors influencing freeway crashes with a negative binomial model[J]. Journal of Transport Information and Safety, 2022, 40 (1): 28- 35
doi: 10.3963/j.jssn.1674-4861.2022.01.004
[21]   马聪, 张生瑞, 马壮林, 等 高速公路交通事故非线性负二项预测模型[J]. 中国公路学报, 2018, 31 (11): 176- 185
MA Cong, ZHANG Sheng-rui, MA Zhuang-lin, et al Nonlinear negative binomial regression model of expressway traffic accident frequency prediction[J]. China Journal of Highway and Transport, 2018, 31 (11): 176- 185
doi: 10.3969/j.issn.1001-7372.2018.11.019
[22]   AHMED M, HUANG H, ABDELATY M, et al Exploring a Bayesian hierarchical approach for developing safety performance functions for a mountainous freeway[J]. Accident Analysis and Prevention, 2011, 43 (4): 1581- 1589
doi: 10.1016/j.aap.2011.03.021
[23]   林宣财, 张旭丰, 王佐, 等 基于交通事故多发位置的区间平均纵坡控制指标研究[J]. 公路交通科技, 2021, 38 (9): 105- 113
LIN Xuan-cai, ZHANG Xu-feng, WANG Zuo, et al Study on control indicator of interval average longitudinal slope based on location of traffic accidents[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (9): 105- 113
doi: 10.3969/j.issn.1002-0268.2021.09.014
[24]   WONG Y D, NICHOLSON A Driver behaviour at horizontal curves: risk compensation and the margin of safety[J]. Accident Analysis and Prevention, 1992, 24 (4): 425- 436
doi: 10.1016/0001-4575(92)90053-L
[25]   张驰, 王博, 贺九平, 等 基于行车动力学的高速公路积水路段行车风险分析[J]. 交通信息与安全, 2019, 37 (5): 9- 17
ZHANG Chi, WANG Bo, HE Jiu-ping, et al Traffic risk analysis of ponding sections on freeways based on driving dynamics[J]. Journal of Transport Information and Safety, 2019, 37 (5): 9- 17
doi: 10.3963/j.issn.1674-4861.2019.05.002
[26]   中交第一公路勘察设计研究院有限公司. 公路路线设计规范: JTG D20-2017[S]. 北京: 人民交通出版社, 2017.
[27]   ANSSEN W H, TENKINK E Considerations on speed selection and risk homeostasis in driving[J]. Accident Analysis and Prevention, 1988, 20 (2): 137- 142
doi: 10.1016/0001-4575(88)90030-9
[28]   XU C, LIU P, WANG W, et al Evaluation of the impacts of traffic states on crash risks on freeways[J]. Accident Analysis and Prevention, 2012, 47 (1): 162- 171
[29]   GARBER N J, EHRHART A A Effect of speed, flow, and geometric characteristics on crash frequency for two-lane highways[J]. Transportation Research Record, 2000, 1717 (1): 76- 83
doi: 10.3141/1717-10
[30]   WANG X, WANG T, TARKO A, et al The influence of combined alignments on lateral acceleration on mountainous freeways: a driving simulator study[J]. Accident Analysis and Prevention, 2015, 76 (1): 110- 117
[31]   汪双杰, 方靖, 周荣贵, 等 公路运行速度特征研究[J]. 中国公路学报, 2010, 23 (S1): 24- 27
WANG Shuang-jie, FANG Jing, ZHOU Rong-gui, et al Study on characteristics of highway speed[J]. China Journal of Highway and Transport, 2010, 23 (S1): 24- 27
[32]   李长城, 刘小明, 荣建 降雨条件下高速公路车辆行驶速度特性[J]. 北京工业大学学报, 2015, 41 (3): 412- 418
LI Chang-cheng, LIU Xiao-ming, RONG Jian Speed characteristics of highway vehicles under rainfall conditions[J]. Journal of Beijing University of Technology, 2015, 41 (3): 412- 418
doi: 10.11936/bjutxb2014040012
[33]   SIL G, NAMA S, MAJI A, et al Effect of horizontal curve geometry on vehicle speed distribution: a four-lane divided highway study[J]. Transportation Letters, 2020, 12 (10): 713- 722
doi: 10.1080/19427867.2019.1695562
[34]   GAO C, XU J, LI Q, et al The effect of posted speed limit on the dispersion of traffic flow speed[J]. Sustainability, 2019, 11 (13): 3594
doi: 10.3390/su11133594
[35]   HAUER E Speed and safety[J]. Transportation Research Record, 2009, 2103 (1): 10- 17
doi: 10.3141/2103-02
[36]   EGGERT J. Solomon curve 2020: relating microscopic risk models with accident statistics [C]// 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro: IEEE, 2016: 2293-2300.
[37]   林宣财, 曹骏驹, 周兴顺, 等 互通式立交单车道匝道宽度取值与单出入口优化设计[J]. 公路交通科技, 2021, 38 (9): 123- 131
LIN Xuan-cai, CAO Jun-ju, ZHOU Xing-shun, et al Value of single lane ramp width and optimization design of single entrance and exit for interchange[J]. Journal of Highway and Transportation Research, 2021, 38 (9): 123- 131
doi: 10.3969/j.issn.1002-0268.2021.09.016
[38]   QU D, CHEN X, YANG W, et al Modeling of car-following required safe distance based on molecular dynamics[J]. Mathematical Problems in Engineering, 2014, (1): 604023
[39]   孙祥龙, 陆建, 戴越 普通公路车速分布特性影响因素分析[J]. 交通信息与安全, 2012, 30 (1): 5- 9
SUN Xiang-long, LU Jian, DAI Yue Analysis of factors influencing speed distribution at ordinary highway[J]. Traffic Information and Safety, 2012, 30 (1): 5- 9
doi: 10.3963/j.ISSN1674-4861.2012.01.002
[40]   HURDLE V F, MERLO M I, ROBERTSON D Study of speed-flow relationships on individual freeway lanes[J]. Transportation Research Record, 1997, 1591 (1): 7- 13
doi: 10.3141/1591-02
[41]   SHANKAR V, MANNERING F Modeling the endogeneity of lane-mean speeds and lane-speed deviations: a structural equations approach[J]. Transportation Research Part A: Policy and Practice, 1998, 32 (5): 311- 322
doi: 10.1016/S0965-8564(98)00003-2
[42]   陆建, 孙祥龙, 戴越 普通公路车速分布特性的回归分析[J]. 东南大学学报:自然科学版, 2012, 42 (2): 374- 377
LU Jian, SUN Xiang-long, DAI Yue Regression analysis on speed distribution characteristics of ordinary road[J]. Journal of Southeast University: Natural Science Edition, 2012, 42 (2): 374- 377
[43]   吴明先, 曹骏驹, 林宣财, 等 多车道高速公路不同车道运行速度的特点[J]. 公路交通科技, 2021, 38 (9): 33- 44
WU Ming-xian, CAO Jun-ju, LIN Xuan-cai, et al Operating speed characteristics in different lanes of multi-lane expressway[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (9): 33- 44
doi: 10.3969/j.issn.1002-0268.2021.09.005
[44]   裴玉龙, 程国柱 高速公路车速离散性与交通事故的关系及车速管理研究[J]. 中国公路学报, 2004, 17 (1): 74- 78
PEI Yulong, CHENG Guozhu Research on the relationship between discrete character of speed and traffic accident and speed management of freeway[J]. China Journal of Highway and Transport, 2004, 17 (1): 74- 78
doi: 10.3321/j.issn:1001-7372.2004.01.017
[1] Lin YANG,Jia-jun WANG. Risk transfer process in urban comprehensive corridor PPP project based on complex network model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1666-1676.
[2] HU Yun-Jin, GAO Hui-Cai, GENG Luo-Sang, et al. Laws of velocity distribution in trapezoidal open channels[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(6): 1102-1106.