|
|
Dynamic deployment algorithm of 5G core network user plane using Benders decomposition |
Jun-jie CHEN1,2( ),Hong-jun LI1,Xiao-jun ZHU1 |
1. School of Information Science and Technology, Nantong University, Nantong 226019, China 2. Nantong Research Institute for Advanced Communication Technologies, Nantong 226019, China |
|
|
Abstract For the dynamic deployment problem of 5G core network user plane in the edge network, a multi-stage optimization algorithm for user plane function (UPF) deployment and traffic scheduling based on Benders decomposition was proposed to cope with the time-varying traffic in 5G networks and support 5G low-latency services. First, considering the delayed effect of the deployment decision, a multi-stage optimization model for UPF deployment and traffic scheduling was proposed for minimizing the energy consumption of edge servers, the UPF deployment cost and the user plane latency. Then, using Benders decomposition, the model was decomposed into a UPF deployment master problem and a set of traffic scheduling subproblems. Last, the master problem and the subproblems were solved alternatively and iteratively to obtain the optimal UPF deployment and traffic scheduling. Simulation results show that the proposed algorithm has a fast convergence speed while ensuring the accuracy of the solution; compared with the stage-by-stage solution method and the heuristic algorithm based on Markov decision process (MDP), the algorithm saves 10.4% and 5.1% of the operational cost, respectively.
|
Received: 21 March 2022
Published: 31 March 2023
|
|
Fund: 国家自然科学基金资助项目(61971245);南通市科技计划项目(JC2018025) |
采用Benders分解的5G核心网用户面动态部署算法
为了应对5G网络时变的数据流量负载,同时满足5G低时延业务需求,提出基于Benders分解的用户面功能(UPF)部署与流量调度多阶段规划算法,以实现边缘网络环境下5G核心网用户面的动态部署. 以最小化边缘服务器能耗、UPF部署成本及用户面数据时延为目标,考虑部署决策的延迟影响,建立UPF部署和流量调度多阶段规划模型. 用Benders分解算法,将模型分解为UPF部署主问题和一系列流量调度子问题,交替迭代求解主问题和子问题,以获得最优的UPF部署和流量调度. 仿真结果表明,所提算法在保证求解精度的同时具有较快的收敛速度;与逐阶段求解方法和基于马尔可夫决策过程(MDP)的启发式算法相比,所提算法分别节省了10.4%和5.1%的总运营成本.
关键词:
核心网,
用户面功能(UPF)部署,
能耗,
时延,
Benders分解
|
|
[1] |
陈俊杰, 李洪均, 曹张华 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报: 工学版, 2021, 55 (9): 1782- 1787 CHEN Jun-jie, LI Hong-jun, CAO Zhang-hua Performance-aware resource allocation algorithm for core network control plane[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (9): 1782- 1787
|
|
|
[2] |
孙士清, 彭建华, 游伟, 等 5G网络下资源感知的服务功能链协同构建和映射算法[J]. 西安交通大学学报, 2020, 54 (8): 140- 148 SUN Shi-qing, PENG Jian-hua, YOU Wei, et al A coordinating composition and mapping algorithm for a service function chain with resource-aware[J]. Journal of Xi’an Jiaotong University, 2020, 54 (8): 140- 148
doi: 10.7652/xjtuxb202008018
|
|
|
[3] |
3GPP. System architecture for the 5G system (release 15): TS 23.501 [S]. [S.l.]: 3GPP, 2018.
|
|
|
[4] |
NGUYEN V G, BRUNSTROM A, GRINNEMO K J, et al SDN/NFV-based mobile packet core network architectures: a survey[J]. IEEE Communications Surveys and Tutorials, 2017, 19 (3): 1567- 1602
doi: 10.1109/COMST.2017.2690823
|
|
|
[5] |
PARVEZ I, RAHMATI A, GUVENC I, et al A survey on low latency towards 5G: RAN, core network and caching solutions[J]. IEEE Communications Surveys and Tutorials, 2018, 20 (4): 3098- 3130
doi: 10.1109/COMST.2018.2841349
|
|
|
[6] |
PHAM C, TRAN N H, REN S, et al Traffic-aware and energy-efficient vNF placement for service chaining: joint sampling and matching approach[J]. IEEE Transactions on Services Computing, 2020, 13 (1): 172- 185
doi: 10.1109/TSC.2017.2671867
|
|
|
[7] |
GHAZNAVI M, SHAHRIAR N, KAMALI S, et al Distributed service function chaining[J]. IEEE Journal on Selected Areas in Communications, 2017, 35 (11): 2479- 2489
doi: 10.1109/JSAC.2017.2760178
|
|
|
[8] |
BASTA A, BLENK A, HOFFMANN K, et al Towards a cost optimal design for a 5G mobile core network based on SDN and NFV[J]. IEEE Transactions on Network and Service Management, 2017, 14 (4): 1061- 1075
doi: 10.1109/TNSM.2017.2732505
|
|
|
[9] |
AGARWAL S, MALANDRINO F, CHIASSERINI C F, et al VNF placement and resource allocation for the support of vertical services in 5G networks[J]. IEEE/ACM Transactions on Networking, 2019, 27 (1): 433- 446
doi: 10.1109/TNET.2018.2890631
|
|
|
[10] |
唐伦, 杨恒, 马润琳, 等 基于5G接入网络的多优先级虚拟网络功能迁移开销与网络能耗联合优化算法[J]. 电子与信息学报, 2019, 41 (9): 2079- 2086 TANG Lun, YANG Heng, MA Run-lin, et al Multi-priority based joint optimization algorithm of virtual network function migration cost and network energy consumption[J]. Journal of Electronics and Information Technology, 2019, 41 (9): 2079- 2086
doi: 10.11999/JEIT180906
|
|
|
[11] |
JIA Y, WU C, LI Z, et al Online scaling of NFV service chains across geo-distributed datacenters[J]. IEEE/ACM Transactions on Networking, 2018, 26 (2): 699- 710
doi: 10.1109/TNET.2018.2800400
|
|
|
[12] |
唐伦, 贺兰钦, 谭颀, 等 基于深度确定性策略梯度的虚拟网络功能迁移优化算法[J]. 电子与信息学报, 2021, 43 (2): 404- 411 TANG Lun, HE Lan-qin, TAN Qi, et al Virtual network function migration optimization algorithm based on deep deterministic policy gradient[J]. Journal of Electronics and Information Technology, 2021, 43 (2): 404- 411
doi: 10.11999/JEIT190921
|
|
|
[13] |
ERAMO V, MIUCCI E, AMMAR M, et al An approach for service function chain routing and virtual function network instance migration in network function virtualization architectures[J]. IEEE/ACM Transactions on Networking, 2017, 25 (4): 2008- 2025
doi: 10.1109/TNET.2017.2668470
|
|
|
[14] |
ITU-R. IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond: Rec. ITU-R M. 2083-0 [R]. Geneva: ITU, 2015.
|
|
|
[15] |
SHI H, LI Y Discovering periodic patterns for large scale mobile traffic data: method and applications[J]. IEEE Transactions on Mobile Computing, 2018, 17 (10): 2266- 2278
doi: 10.1109/TMC.2018.2799945
|
|
|
[16] |
DAYARATHNA M, WEN Y, FAN R Data center energy consumption modeling: a survey[J]. IEEE Communications Surveys and Tutorials, 2016, 18 (1): 732- 794
doi: 10.1109/COMST.2015.2481183
|
|
|
[17] |
GAREY M R, JOHNSON D S. Computers and intractability: a guide to the theory of NP-completeness [M]. New York: W. H. Freeman and Company, 1979.
|
|
|
[18] |
LUEKER G S. Two NP-complete problems in nonnegative integer programming: T-R-178 [R]. Princeton: Princeton University Press, 1975.
|
|
|
[19] |
CONEJO A J, CASTILLO E, MÍNGUEZ R, et al. Decomposition techniques in mathematical programming: engineering and science applications [M]. Berlin: Springer, 2006.
|
|
|
[20] |
FILO M, FOH C H, VAHID S, et al Performance analysis of ultra-dense networks with regularly deployed base stations[J]. IEEE Transactions on Wireless Communications, 2020, 19 (5): 3530- 3545
doi: 10.1109/TWC.2020.2974729
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|