Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (2): 426-436    DOI: 10.3785/j.issn.1008-973X.2023.02.021
    
Age of information-energy tradeoff based on security status update
Lei LIU1(),Bao-gang LI1,2,*(),Zhi YANG1
1. Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China
2. Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, China
Download: HTML     PDF(1043KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Considering that the sensor node in the status update system should transmit the status update randomly to the base station as timely as possible, Age of information (AoI) was introduced as a new time measurement, and the performance indexes of average confidentiality age and secrecy age outage probability were introduced to ensure the communication security of the system. A practical truncation of automatic repeated requests (TARQ) scheme was adopted, in which the sensor node continuously transmitted and updated the current state until the maximum number of transfers allowed was reached or a new state update was generated. The average AoI, the closed form expression of the average peak AoI, and the expression of average energy consumption were derived, and then the average AoI was minimized by optimizing the transmission power of Internet of Things (IoT) devices and the maximum allowed transmission times under the constraint of the average transmission power, to realize the information age-energy tradeoff of the system. Simulation results show that the TARQ scheme has lower average AoI and better performance than the classical automatic repeat request (ARQ) scheme which allows infinite retransmission under the same average transmission power constraint.



Key wordsage of information (AoI)      age of information-energy tradeoff      physical layer security      status update      secrecy outage probability     
Received: 20 May 2022      Published: 28 February 2023
CLC:  TN 92  
Fund:  国家自然科学基金资助项目 (61971190);河北省自然科学基金资助项目(F2022502020)
Corresponding Authors: Bao-gang LI     E-mail: llan0825@163.com;baogangli@ncepu.edu.cn
Cite this article:

Lei LIU,Bao-gang LI,Zhi YANG. Age of information-energy tradeoff based on security status update. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 426-436.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.02.021     OR     https://www.zjujournals.com/eng/Y2023/V57/I2/426


基于安全状态更新的信息年龄-能量权衡

考虑状态更新系统中传感器节点要尽可能及时地将随机生成的状态更新传送给基站,以信息年龄(AoI)作为时间新度量,同时引入平均保密年龄和保密年龄中断概率的性能指标,保证系统的通信安全性. 采用实用的截断自动重复请求(TARQ)方案,传感器节点持续传输不断更新当前状态,直到达到允许的最大传输次数或生成新的状态更新. 推导出平均AoI、平均峰值AoI的闭合形式表达式,以及平均能耗的表达式,通过优化物联网(IoT)设备的传输功率和平均传输功率约束下的最大允许传输次数来最小化平均AoI,实现系统的信息年龄-能量权衡. 仿真结果表明,在相同的平均传输功率约束下,采用的TARQ方案比允许无限次重传的经典自动重复请求(ARQ)方案的平均AoI更低,性能更好.


关键词: 信息年龄(AoI),  信息年龄-能量权衡,  物理层安全,  状态更新,  保密中断概率 
Fig.1 System model of single antenna sensor nodes transmitting status update information to base station
Fig.2 Evolution diagram of instantaneous AoI
参数 数值
衰落模型 瑞利衰落
频段/MHz 940
系统带宽/kHz 200
距离/m 200
路径损耗指数 2
信息率/kps 100
生成速率/(状态更新/时隙) 0.05,0.20,0.40
Tab.1 Simulation parameter setting of TARQ scheme
Fig.3 Variation of average AoI of TARQ scheme with transmission power under different maximum transmission times
Fig.4 Variation of average peak AoI of TARQ scheme with transmission power under different maximum transmission times
Fig.5 Variation of average transmission power consumption of TARQ scheme with maximum allowable transmission times under different transmission power values
Fig.6 Optimal maximum allowable transmission times under different average transmission power constraints and different generation rates
Fig.7 Variation of optimal average AoI with constraint of average transmission power at different transmission rates
Fig.8 Influence of status update probability on performance
[1]   SICARI A, RIZZARDI A, GRIECO L A, et al Security, privacy and trust in internet of things: the road ahead[J]. Computer Networks, 2015, (76): 146- 164
[2]   KOSTA, PAPPAS N, ANGELAKIS V. Age of information: a new concept, metric, and tool. [EB/OL]. . [2022-04-23]. http://dx.doi.org/10.1561/1300000060.
[3]   CHANG Y H, LIN H, JI Y S Information cofreshness-aware grant assignment and transmission scheduling for Internet of things[J]. IEEE Internet of Things Journal, 2021, 19 (8): 14435- 14446
[4]   WANG Y L, CHEN W. Joint freshness and channel aware scheduling for multi-user wireless communications [C]// 2021 EEE International Conference on Communications. Nanjing: IEEE, 2021: 1-6.
[5]   ARAFA A, YANG J, ULUKUS S, et al Timely status updating over erasure channels using an energy harvesting sensor: single and multiple sources[J]. IEEE Transactions on Green Communications and Networking, 2022, 1 (6): 6- 19
[6]   BEVTUR H B, BAGHAEE S, UYSAL E. Towards AoI-aware smart IoT systems [C]// 2020 International Conference on Computing, Networking and Communications. Tokyo: IEEE, 2020: 353-357.
[7]   XIE M, GONG J, MA X. Age-energy tradeoff of short packet based transmissions in multicast networks with ARQ [C]// 2020 IEEE 91st Vehicular Technology Conference. Michigan: IEEE, 2020: 1-5.
[8]   SHI Y F, JING L T, JIA X D, et al Improvement on age of information for information update systems with HARQ chase combining and sensor harvesting-transmitting diversities[J]. IEEE Access, 2021, (9): 78035- 78049
[9]   ARAFA A, BANAWAN K, SEDDIK K G, et al. On timely channel coding with hybrid ARQ [C]// 2019 IEEE Global Communications Conference. Waikoloa Village: IEEE, 2019: 1-6.
[10]   JAISWAL A, CHATTOPADHYAY A. Minimization of age-of-information in remote sensing with energy harvesting [C]// 2021 IEEE International Symposium on Information Theory. Melbourne: IEEE, 2021: 3249-3254.
[11]   HE Q, DAN G, FODOR V. On Emptying a wireless network with minimum-energy under age constraints [C]// IEEE Conference on Computer Communications Workshops. Shanghai: IEEE, 2019: 668-673.
[12]   YI H T, YU P H. Online energy-efficient scheduling for timely information downloads in mobile networks [C]// 2019 IEEE International Symposium on Information Theory. Nanjing: IEEE, 2019: 1022-1026.
[13]   VALEHI A, RAZI A Maximizing energy efficiency of cognitive wireless sensor networks with constrained age of information[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 4 (8): 643- 654
[14]   GU Y, CHEN H, ZHOU Y, et al Timely status update in Internet of Things monitoring systems: an age-energy tradeoff[J]. IEEE Internet of Things Journal, 2019, 3 (6): 5324- 5335
[15]   YU C, WANG X J, YANG H H, et al. AoI and energy consumption oriented dynamic status updating in caching enabled Iot networks [C] // IEEE Conference on Computer Communications Workshops. Chengdu: IEEE. 2020: 710–715.
[16]   XIE M, GONG J, MA X. M. Is the packetized transmission efficient? an age-energy perspective [C]// IEEE Conference on Computer Communications Workshops. Chengdu: IEEE, 2020: 329–333.
[17]   ABBAS Q, ZEB S, HASSAN, et al. Joint optimization of age of information and energy efficiency in Iot networks [C]// 2020 IEEE 91st Vehicular Technology Conference. Antwerp: IEEE, 2020: 1–5.
[18]   GRYBOSI J F, REBELATTO J L, MORITZ G L, et al Age-energy tradeoff of truncated ARQ retransmission with receiver diversity[J]. IEEE Wireless Communications Letters, 2020, 11 (9): 1961- 1964
[19]   MUKHERJEE A Physical-layer security in the internet of things: sensing and communication confidentiality under resource constraints[J]. Proceedings of the IEEE, 2015, 10 (103): 1747- 1761
[20]   WYNER A D The wire-tap channel[J]. Bell System Technical Journal, 1975, 8 (54): 1355- 1387
[21]   AZARHAVA H, MUSEVI J Energy efficient resource allocation in wireless energy harvesting sensor networks[J]. IEEE Wireless Communications Letters, 2020, 7 (9): 1000- 1003
[22]   QIAN H Z, YUAN T J. Efficiency optimization control method of wireless power transmission based on double pick-up structure [C]// 2021 13th International Conference on Measuring Technology and Mechatronics. Beihai: IEEE, 2021: 178-182.
[1] Yang-zhao CHEN,Wei-na YUAN. Deep learning aided multi-user detection for up-link grant-free NOMA[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 816-822.
[2] Chen SUN,Zhe-yi WU,Jian-tao YUAN. Energy saving and channel access algorithm of unlicensed D2D networks in power Internet of things[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1867-1873.
[3] Zhou-fei WANG,Wei-na YUAN. Channel estimation and detection method for multicarrier system based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 732-738.
[4] Chun-sheng LIU,Hong SHAN,Bin WANG,Jun HUANG. Wireless sensor network localization via Bregman divergence[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1525-1535.
[5] Xue-qin ZHANG,Li ZHANG,Chun-hua GU. Quantitative assessment of social engineering threat in social network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 837-842.
[6] Xiao-yan ZHENG,Hui-fang CHEN,Lei XIE. Performance analysis of distributed detection under sensing data falsification attack[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 563-570.
[7] SI En bo, WANG Jing, JIN Qi bing, ZHOU Jing lin. Synchronous optimization of linkscheduling and timeslot assignment for industrial wireless network[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1203-1213.
[8] WU Duan-po, JIN Xin-yu, JIANG Lu-rong, OUYANG-Bo. Dropped-call probability in high speed railway environment[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 705-710.
[9] DONG Li-da, HUANG Cong , GUAN Lin-bo. Double-tree structure based scheduling strategy for wireless HART[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 391-397.
[10] LI Xun-wen, JIN Wen-guang, SHAO Qi-qing, GAO Wei. Improved backup routing protocol of AODV based on PLC network[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1218-1224.
[11] GONG Ben-kang, ZHANG Zhao-yang, YE Lu. Overlapped OFDMA:a novel spectrum sharing scheme[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 860-866.
[12] HE Xiao-feng, MA Cheng-yan, YE Tian-chun, WANG Liang-kun,MO Tai-shan. Digital programmable RF wideband amplifier[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 1985-1990.
[13] LOU Wen-tao, ZHANG Zhao-yang, CHEN Shao-lei, YIN Rui. Energy allocation in rateless coded cognitive radio system[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1816-1821.
[14] LIU Jun-biao, JIN Xin-yu,DONG Fang. Wireless fading analysis in high-speed train communication[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1580-1584.
[15] RONG Zhi-neng, JIN Wen-guang, LUO Yi-xi. Design of wireless network on human motion capture[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1314-1319.