Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (8): 1525-1535    DOI: 10.3785/j.issn.1008-973X.2019.08.011
Computer and Control Engineering     
Wireless sensor network localization via Bregman divergence
Chun-sheng LIU(),Hong SHAN*(),Bin WANG,Jun HUANG
College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
Download: HTML     PDF(662KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The impulse noise is difficult to deal with by using the existing algorithms. A WSN localization algorithm based on the Bregman divergence was proposed to improve the node positioning accuracy of the wireless sensor network (WSN). The proposed algorithm is divided into two stages, the stage of Euclidean distance matrix (EDM) recovery and the stage of coordinates mapping. The problem of EDM recovery is transformed to an issue of matrix completion in a noisy environment, based on the natural low-rank character of the EDM. A regularized matrix completion model is established by using L1,2-norm explicit smoothing the pulse noise. To solve the model effectively, the multivariate function Bregman divergence was defined, then the split Bregman iteration was extended to the matrix space, and the alternating minimization method was combined to obtain the EDM estimator. Furthermore, node localization was available based on the multi-dimensional scaling method. Experiments demonstrate that under different noise conditions, the proposed algorithm outperforms other algorithms in terms of positioning accuracy and robustness while ensuring high efficiency. Notably, the localization error of the proposed algorithm was less than a quarter of those of other algorithms, when the sampling rate reached a certain level.



Key wordswireless sensor network      localization      matrix completion      Bregman divergence      impulse noise     
Received: 23 June 2017      Published: 13 August 2019
CLC:  TN 92  
Corresponding Authors: Hong SHAN     E-mail: the_springliu@163.com;HongShanWN@163.com
Cite this article:

Chun-sheng LIU,Hong SHAN,Bin WANG,Jun HUANG. Wireless sensor network localization via Bregman divergence. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1525-1535.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.08.011     OR     http://www.zjujournals.com/eng/Y2019/V53/I8/1525


基于Bregman散度的无线传感器网络定位

现有算法难以处理脉冲噪声,导致无线传感器网络(WSN)中节点定位精度较低,为此提出基于Bregman散度的WSN定位算法. 该算法分为2个阶段:欧氏距离矩阵(EDM)恢复阶段和坐标映射阶段. 基于EDM的自然低秩性,将EDM恢复问题转化为噪声环境下的矩阵补全问题;采用L1,2范数显式平滑脉冲噪声,建立正则化矩阵补全模型;为了有效求解该模型,定义多元函数Bregman散度,将分裂Bregman迭代拓展到矩阵空间,结合交替最小化算法,得到EDM的估计;在此基础上,基于多维标度法对节点位置进行估计. 实验结果表明,在不同噪声条件下,该算法在保证高效性的同时,在定位精度和鲁棒性方面优于其他算法,特别是当采样率达到一定程度时,定位误差不到其他算法的1/4.


关键词: 无线传感器网络,  定位,  矩阵补全,  Bregman散度,  脉冲噪声 
Fig.1 Comparison of convergence of LBD_MDS and other three algorithms
Fig.2 Recovery errors of Euclidean distance matrix under different noise conditions
Fig.3 Influence of numbers of beacons on localization errors
Fig.4 Influence of sampling rates on localization errors under different noise conditions
Fig.5 Influence of sampling rates on localization error variance under different noise conditions
EDM 维度 算法 REs LEs t/s
100×100 LBD_MDS 1.298 7×10?2 3.538 9×10?2 1.416
IALM 7.322 8×10?2 1.635 1×10?1 3.619
OptSpace 2.251 6×10?1 5.807 1×10?1 4.730
ScGrassMC 7.850 9×10?2 2.311 8×10?1 1.391
200×200 LBD_MDS 8.711 1×10?4 3.684 4×10?3 6.746
IALM 3.413 0×10?3 6.771 8×10?2 13.211
OptSpace 8.178 8×10?2 3.229 1×10?1 17.066
ScGrassMC 8.929 0×10?3 5.417 5×10?2 2.865
500×500 LBD_MDS 8.243 4×10?5 7.195 4×10?4 49.334
IALM 6.697 3×10?4 9.545 0×10?3 144.020
OptSpace 1.117 0×10?3 1.541 8×10?2 151.890
ScGrassMC 8.378 9×10?4 1.155 0×10?2 23.648
Tab.1 Performance comparison of algorithms under different WSN scales
Fig.6 Localization errors cumulative distribution under different noise conditions
Fig.7 Influence of noise levels on algorithm performance
[1]   ASSAF A E, ZAIDI S, AFFES S, et al Low-cost localization for multihop heterogeneous wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2016, 15 (1): 472- 484
doi: 10.1109/TWC.2015.2475255
[2]   XIAO F, LIU W, LI Z, et al Noise-tolerant wireless sensor networks localization via multi-norms regularized matrix completion[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (3): 2409- 2419
doi: 10.1109/TVT.2017.2771805
[3]   FENG C, VALAEE S, AU W S A, et al. Localization of wireless sensors via nuclear norm for rank minimization [C]// Global Telecommunications Conference. Miami: IEEE, 2010: 1-5.
[4]   XIAO F, SHA C, CHEN L, et al. Noise-tolerant localization from incomplete range measurements for wireless sensor networks [C]// International Conference on Computer Communications. Kowloon: IEEE, 2015: 2794-2802.
[5]   NGUYEN T L, SHIN Y Matrix completion optimization for localization in wireless sensor networks for intelligent IoT[J]. Sensors, 2016, 16 (5): 722
doi: 10.3390/s16050722
[6]   SHANG Y, RUML W, ZHANG Y, et al. Localization from mere connectivity [C]// ACM International Symposium on Mobile Ad Hoc Networking and Computing. Annapolis: ACM, 2003: 201-212.
[7]   FANG X, JIANG Z, NAN L, et al Noise-aware localization algorithms for wireless sensor networks based on multidimensional scaling and adaptive Kalman filtering[J]. Computer Communications, 2017, 101 (3): 57- 68
[8]   BHASKAR S A Localization from connectivity: a 1-bit maximum likelihood approach[J]. IEEE/ACM Transactions on Networking, 2016, 24 (5): 2939- 2953
doi: 10.1109/TNET.2015.2495171
[9]   WANG M, ZHANG Z, TIAN X, et al. Temporal correlation of the RSS improves accuracy of fingerprinting localization [C]// International Conference on Computer Communications. San Francisco: IEEE, 2016: 1-9.
[10]   FANG X, JIANG Z, NAN L, et al Optimal weighted K-nearest neighbour algorithm for wireless sensor network fingerprint localization in noisy environment[J]. IET Communications, 2018, 12 (10): 1171- 1177
doi: 10.1049/iet-com.2017.0515
[11]   GUO X, CHU L, ANSARI N Joint localization of multiple sources from incomplete noisy Euclidean distance matrix in wireless networks[J]. Computer Communications, 2018, 122 (6): 20- 29
[12]   SINGH P, KHOSLA A, KUMAR A, et al Computational intelligence based localization of moving target nodes using single anchor node in wireless sensor networks[J]. Telecommunication Systems, 2018, 69 (3): 397- 411
doi: 10.1007/s11235-018-0444-2
[13]   ARORA S, SINGH S Node localization in wireless sensor networks using butterfly optimization algorithm[J]. Arabian Journal for Science and Engineering, 2017, 42 (8): 3325- 3335
doi: 10.1007/s13369-017-2471-9
[14]   SAHOTA H, KUMAR R Maximum-likelihood sensor node localization using received signal strength in multimedia with multipath characteristics[J]. IEEE Systems Journal, 2018, 12 (1): 506- 515
doi: 10.1109/JSYST.2016.2550607
[15]   XIAO F, CHEN L, SHA C, et al Noise tolerant localization for sensor networks[J]. IEEE/ACM Transactions on Networking, 2018, 26 (4): 1707- 1714
[16]   BI D, XIE Y, MA L, et al Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66 (4): 777- 791
doi: 10.1109/TIM.2017.2654578
[17]   CAI J F, OSHER S, SHEN Z Linearized Bregman iterations for frame-based image deblurring[J]. SIAM Journal on Imaging Sciences, 2009, 2 (1): 226- 252
doi: 10.1137/080733371
[18]   HUA X, FAN H, CHENG Y, et al Information geometry for radar target detection with total Jensen-Bregman divergence[J]. Entropy, 2018, 20 (4): 256
doi: 10.3390/e20040256
[19]   FISCHER A Quantization and clustering with Bregman divergences[J]. Journal of Multivariate Analysis, 2010, 101 (9): 2207- 2221
doi: 10.1016/j.jmva.2010.05.008
[20]   BRèGMAN L M The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7 (3): 200- 217
doi: 10.1016/0041-5553(67)90040-7
[21]   FU X, SHA C, LEI C, et al Localization algorithm for wireless sensor networks via norm regularized matrix completion[J]. Journal of Computer Research and Development, 2016, 53 (1): 216- 227
[22]   GOLDSTEIN T, OSHER S The split Bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Science, 2009, 2 (2): 323- 343
doi: 10.1137/080725891
[23]   PARIKH N, BOYD S Proximal algorithms[J]. Foundations and Trends in Optimization, 2014, 1 (3): 127- 239
doi: 10.1561/2400000003
[24]   BRUCKSTEIN A M, DONOHO D L, ELAD M From sparse solutions of systems of equations to sparse modeling of signals and images[J]. SIAM Review, 2009, 51 (1): 34- 81
doi: 10.1137/060657704
[25]   COMBETTES P L Signal recovery by proximal forward-backward splitting[J]. Multiscale Modeling and Simulation, 2005, 4 (4): 1168- 1200
doi: 10.1137/050626090
[26]   CAI J F, CANDES E J, et al A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20 (4): 1956- 1982
doi: 10.1137/080738970
[27]   GONG P, YE J, ZHANG C. Robust multi-task feature learning [C]// International Conference on Knowledge Discovery and Data Mining. Beijing: ACM, 2012: 895-903.
[28]   LIN Z, LIU R, SU Z. Linearized alternating direction method with adaptive penalty for low rank representation [C]// International Conference on Neural Information Processing Systems. Granada: Curran Associates Inc, 2011: 612-620.
[29]   KESHAVAN R H, OH S, MONTANARI A Matrix completion from a few entries[J]. IEEE Transactions on Information Theory, 2010, 56 (6): 2980- 2998
doi: 10.1109/TIT.2010.2046205
[1] Xin MA,Xin-wu LIANG,Ji-yuan CAI. Fast visual SLAM method based on point and line features[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 402-409.
[2] Wen-jin HUANG,Miao-hua HUANG. Double-layer fusion of lidar and roadside camera for cooperative localization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1369-1379.
[3] Dao-sheng LING,Jiang LI,Wen-jun WANG,Cheng-bao HU. Structure of artificial soils and its influence on strain localization[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1689-1696.
[4] Zhi-peng XI,Zhuo LOU,Xiao-xia LI,Yan SUN,Qiang YANG,Wen-jun YAN. Vision-based localization and navigation for UAV inspection in photovoltaic farms[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 880-888.
[5] Xiang-hao CHENG,Fei-peng DA,Liang WANG. Feature fusion based constrained local model for three-dimensional facial landmark localization[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 770-776.
[6] Ai-dong XU,Wen-qi HUANG,Zhe MING,Wei-liang CHEN,Roland HU,Hang YANG. Facial landmark localization based on cascaded hourglass network with residual features[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2365-2371.
[7] WANG Kai, YUE Bo-xuan, FU Jun-wei, LIANG Jun. Image restoration and fault tolerance of stereo SLAM based on generative adversarial net[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 115-125.
[8] YUAN Qi, MA Chun-guang, YAO Jian-sheng, YU Hai-tao. w-balanced incomplete block design method for key pre-distribution scheme in heterogeneous wireless sensor network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 126-136.
[9] LIU Zhou-zhou, LI Shi-ning, LI Bin, WANG Hao, ZHANG Qian-yun, ZHENG Ran. New elastic collision optimization algorithm and its application in sensor cloud resource scheduling[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1431-1443.
[10] ZHOU Yu, WANG Hong-jun, SHAO Fu-cai, SHA Wen-hao. Signal coverage detection algorithm for electromagnetic situation generation in wireless communication networks[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1088-1096.
[11] LAI Xiao-han, WEN Hao-xiang, CHEN Long-dao. Energy efficient routing for wireless sensor networks in intertidal environment[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2414-2422.
[12] HU Cheng-bao, LING Dao-sheng, GONG Shi-lin, SHI Ji-sen, HAN Chao, DING Zhi-feng. Formula for inclination angle of shear band based on soil state and microscopic characteristics in sands[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2068-2076.
[13] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1973-1979.
[14] XIAO Jing-bo, CHEN Min, LIU Yun-tao, LIU Yun-chao, CHEN Jie. Design and implementation of sensor data acquisition node for water monitoring[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1446-1452.
[15] QIAN Liang-fang, ZHANG Sen-lin, LIU Mei-qin. Reservation-based MAC protocol for underwater wireless sensor networks with data train[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 691-696.