Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (2): 306-312    DOI: 10.3785/j.issn.1008-973X.2022.02.011
Publicly verifiable secret sharing technology in blockchain
Miao HE1,2(),Fen-hua BAI1,2,Zhuo YU3,Tao SHEN1,2,*()
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
2. Yunnan Key Laboratory of Computer Technologies Application, Kunming University of Science and Technology, Kunming 650500, China
3. Beijing Chain-Power Information Technology Limited Company, Beijing 100192, China
Download: HTML     PDF(1058KB) HTML
Export: BibTeX | EndNote (RIS)      


A publicly verifiable secret sharing technology was proposed based on the threshold secret sharing technology, in order to study the security of the user’s private secret in the blockchain. The secret fragments can be verified after the participating nodes receiving them, which can effectively preventing the master splitting node from doing evil when splitting the key. The secret fragments of the nodes participating in the secret splicing are publicly verified through the secret recovery phase, to prevent the nodes in the secret recovery phase from doing evil. Identity IDs are added to the participating nodes during the secret distribution phase, thus malicious nodes can be tracked and the node status can be updated in real time. The dynamic threshold mechanism was designed so that after the node holding the secret fragment is offline, the owner of the secret fragment and the master node can redistribute the secret fragment to the new participating nodes to ensure the integrity of the private secret fragment. Experimental results show that the private secret recovery rate of this scheme can reach 80%, and it has threshold characteristics, traceability, unforgeability and recoverability.

Key wordsblockchain      threshold secret      secret division      secret recovery      dynamic threshold     
Received: 22 August 2021      Published: 03 March 2022
CLC:  TP 311  
Corresponding Authors: Tao SHEN     E-mail:;
Cite this article:

Miao HE,Fen-hua BAI,Zhuo YU,Tao SHEN. Publicly verifiable secret sharing technology in blockchain. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 306-312.

URL:     OR


为了研究区块链中用户私钥安全性的问题,以门限密钥共享技术作为研究基础,提出可公开验证密钥共享技术. 参与节点在收到密钥片段后对其进行验证,能有效防止分割密钥时主分割节点作恶; 在密钥恢复阶段,对参与密钥拼接的节点的密钥片段进行公开验证,防止密钥恢复阶段参与节点作恶; 在分发密钥阶段给参与节点添加身份IDs,从而可以对恶意节点进行追踪并实时更新节点状态; 设计动态门限机制,在持有密钥片段的节点离线后,密钥碎片的拥有者和主节点一起重新分配密钥碎片给新的参与节点,保证私钥碎片的完整性. 实验结果表明,该方案的私钥恢复率为80%,且具有门限特性、可追溯性、不可伪造性和可恢复性.

关键词: 区块链,  门限密钥,  密钥分割,  密钥恢复,  动态门限 
Fig.1 Flow chart of publicly verifiable secret sharing technology in blockchain
Fig.2 Blockchain security model
方案 重构阶段是否
方案1[23] 不需要
方案2[24] 不需要
Shamir门限密钥共享方案 需要
本研究方案 不需要
Tab.1 Safety comparison between proposed research scheme and existing typical schemes
Fig.3 Private secret recovery rate for a single user
Fig.4 Recovery time of user private secret
Fig.5 Recovery rate of private secret with malicious node
Fig.6 Private secret recoverability with different numbers of users
[1]   FERRAG M A, SHU L, YANG X, et al. Security and privacy for green IoT-based agriculture: review, blockchain solutions, and challenges [J]. IEEE Access, 2020, 8: 32031-32053.
[2]   NING Z, ZHANG K, WANG X, et al. Intelligent edge computing in internet of vehicles: a joint computation offloading and caching solution[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(4): 2212-2225.
[3]   SINGH R P, JAVAID M, HALEEM A, et al. Internet of things (IoT) applications to fight against COVID-19 pandemic[J]. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2020, 14(4): 521-524.
[4]   TRELEAVEN P, BROWN R G, YANG D J C Blockchain technology in finance[J]. Computer, 2017, 50 (9): 14- 17
doi: 10.1109/MC.2017.3571047
[5]   FANNING K, CENTERS D. Blockchain and its coming impact on financial services[J]. Journal of Corporate Accouting and Finance, 2016, 27(5): 53-57.
[6]   GUNDUZ M Z, DAS R. Cyber-security on smart grid: threats and potential solutions[J]. Computer Networks, 2020, 169: 107094.
[7]   MOLLENKOPF D A, OZANNE L K, STOLZE H. A transformative supply chain response to COVID-19[J]. Journal of Service Management, 2020, 32(2): 190-202.
[8]   CHAIN I S. Data, not digitalization, transforms the post-pandemic supply chain[EB/OL]. [2021-08-01].
[9]   ZHOU Q, HUANG H, ZHENG Z, et al. Solutions to scalability of blockchain: a survey[J]. IEEE Access, 2020, 8: 16440-16455.
[10]   WANG J, YANG Y, WANG T, et al. Big data service architecture: a survey[J]. Journal of Internet Technology, 2020, 21(2): 393-405.
[11]   VAISHYA R, JAVAID M, KHAN I H, et al. Artificial Intelligence (AI) applications for COVID-19 pandemic[J]. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2020, 14(4): 337-339.
[12]   蒋勇. 白话区块链[M]. 北京: 机械工业出版社, 2017.
[13]   周健, 屈冉 一种抗合谋攻击的区块链私钥管理方案[J]. 计算机工程, 2020, 46 (11): 29- 34
ZHOU Jian, QU Ran A private key management scheme on blockchain against collusion attacks[J]. Computer Engineering, 2020, 46 (11): 29- 34
[14]   PANDA S S, JWNA D, MOHANTA B K, et al. Authentication and key management in distributed iot using blockchain technology[EB/OL]. [2021-08-01].
[15]   LUSETTI M, SALAI L, DALLATANA A A blockchain based solution for the custody of digital files in forensic medicine[J]. Forensic Science International: Digital Investigation, 2020, 35: 301017
doi: 10.1016/j.fsidi.2020.301017
[16]   GURI M. Beatcoin: leaking private keys from air-gapped cryptocurrency wallets [C]// 2018 IEEE International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data. Halifax: IEEE, 2018: 1308-1316.
[17]   XIAO Y, ZHANG P, LIU Y, et al Secure and efficient multi-signature schemes for fabric: an enterprise blockchain platform[J]. IEEE Transactions on Information Forensics and Security, 2020, 16: 1782- 1794
[18]   PAL O, ALAM B, THAKUR V, et al. Key management for blockchain technology [J]. ICT Express, 2021, 7(1): 76-80.
[19]   GUTOSKI G, STEBILA D. Hierarchical deterministic bitcoin wallets that tolerate key leakage [C]// International Conference on Financial Cryptography and Data Security. [S.l.]: Springer, 2015: 497-504.
[20]   WANG Y, HOU Q, ZHANG X, et al Dynamic threshold signature scheme based on Chinese remainder theorem[J]. Journal of Computer Applications, 2018, 38 (4): 1041- 1045
[21]   YU M, ZHANG J, WANG J, et al. Internet of Things security and privacy-preserving method through nodes differentiation, concrete cluster centers, multi-signature, and blockchain[J]. International Journal of Distributed Sensor Networks, 2018, 14(12): 1550147718815842.
[22]   ZHU Y, XIA L, SENEVIRATNE O. A proposal for account recovery in decentralized applications [C]// 2019 IEEE International Conference on Blockchain. [S.l.]: IEEE, 2019: 148-155.
[23]   GENNARO R, GOLDFEDER S, NARAYANAN A. Threshold-optimal DSA/ECDSA signatures and an application to bitcoin wallet security [C]// International Conference on Applied Cryptography and Network Security. [S.l.]: Springer, 2016.
[24]   DIKSHIT P, SINGH K. Efficient weighted threshold ECDSA for securing bitcoin wallet[C]// 2017 ISEA Asia Security and Privacy. Surat: IEEE, 2016, 2: 43-51.
[25]   LI Q, ZHOU Y. Research and application based on A. Shamir’s (t, n) threshold secret sharing scheme [C]// 7th International Conference on Computer Science and Education. Melbourne: IEEE, 2012: 671-674.
[1] Si-han DONG,Jun-chang XIN,Kun HAO,Zhong-ming YAO,Jin-yi CHEN. A join query optimization algorithm in multi-blockchain environment[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 313-321.
[2] Xiu-bo LIANG,Jun-han WU,Yu ZHAO,Ke-ting YIN. Review of blockchain data security management and privacy protection technology research[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 1-15.
[3] Xue-jiao LIU,Yi-dan YIN,Wei CHEN,Ying-jie XIA,Jia-li XU,Li-dong HAN. Secure data sharing scheme in Internet of Vehicles based on blockchain[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 957-965.
[4] SHENG Nian-zu, LI Fang, LI Xiao-feng, ZHAO He, ZHOU Tong. Data capitalization method based on blockchain smart contract for Internet of Things[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2150-2158.