Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (11): 2150-2158    DOI: 10.3785/j.issn.1008-973X.2018.11.014
Computer Technology     
Data capitalization method based on blockchain smart contract for Internet of Things
SHENG Nian-zu1,2, LI Fang1, LI Xiao-feng1,2, ZHAO He1, ZHOU Tong1,2
1. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2. University of Science and Technology of China, Hefei 230026, China
Download:   PDF(986KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Internet of Things data capitalization method based on blockchain smart contract was used as a solution to the challenges when ascertaining data ownership, dealing with the inefficiency of quantification and value transfer of digital asset. The data's right was determined by transferring data ownership and control from the equipment manufacturers to the users, with the aid of digital fingerprints stored in the blockchain. The data reliability was ensured by storing the up-to-date device status and hash of the data into the blockchain, which was achieved by the full lifecycle management and digital signatures. A data trading platform without any third-party was established based on smart contract to guarantee the security of data sharing and accomplish the realization and migration of data's value. The quantitative analysis of attack probability and attack success rate shows that the technology of blockchain smart contract provides data tamper resistance and eliminates the trust crisis in data transaction processes. The proposed method realizes the capitalization of data in the Internet of Things initially and may help promote the data value migration and data sharing in the Internet of Things in future.



Received: 26 January 2018      Published: 22 November 2018
CLC:  TP311  
Cite this article:

SHENG Nian-zu, LI Fang, LI Xiao-feng, ZHAO He, ZHOU Tong. Data capitalization method based on blockchain smart contract for Internet of Things. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2150-2158.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.11.014     OR     http://www.zjujournals.com/eng/Y2018/V52/I11/2150


基于区块链智能合约的物联网数据资产化方法

使用基于区块链智能合约的物联网数据资产化方法解决物联网系统中个人数据难以确权、数据资产的量化跟踪和价值转移无法高效完成等问题.借助区块链数字指纹将数据所有权和控制权从设备生产商转移至用户,为个人数据确权;通过全生命周期管理和数字签名等技术,将设备状态和数据哈希值存储至区块链,保证数据的可靠性;使用智能合约构建去第三方数据交易平台,保证数据共享的安全性,便捷地完成数据变现和数据价值转移.攻击可能性和攻击成功概率的量化分析结果表明,区块链智能合约技术可以为数据提供防篡改性,消除数据交易过程中的信任问题.借助区块链智能合约技术能够初步实现物联网数据的资产化,促进物联网设备的数据价值转移和共享.

[1] 齐爱民, 盘佳. 数据权、数据主权的确立与大数据保护的基本原则[J]. 苏州大学学报:哲学社会科学版, 2015(1):64-70. QI Ai-min, PAN Jia. Data right, the establishment of data sovereignty and the basic principle of big data protection[J]. Journal of Soochow University:Philosophy and Social Science Edition. 2015(1):64-70.
[2] 中国资产评估协会. 中国资产评估准则:2005[M]. 北京:经济科学出版社, 2005:41-45.
[3] 彭云. 大数据环境下数据确权问题研究[J]. 现代电信科技, 2016, 46(5):17-20. PENG Yun. Research on authenticating data rights in big data environment[J]. Modern Science and Technology of Telecommunications. 2016, 46(5):17-20.
[4] 中国电子技术标准化研究院. 中国区块链与物联网融合创新应用蓝皮书[R/OL]. (2017-09-13)[2017-12-20] . http://www.cesi.ac.cn/images/editor/20170913/20170913145041632.pdf.
[5] ZYSKIND G, NATHAN O, PENTLAND A. Decentralizing privacy:using blockchain to protect personal data[C]//IEEE Security and Privacy Workshops. San Jose:IEEE, 2015:180-184.
[6] AZARIA A, EKBLAW A, VIEIRA T, et al. MedRec:using blockchain for medical data access and permission management[C]//International Conference on Open and Big Data. Vienna:IEEE, 2016:25-30.
[7] ZHANG Y, WEN J. An IoT electric business model based on the protocol of bitcoin[C]//International Conference on Intelligence in Next Generation Networks. Paris:IEEE, 2015:184-191.
[8] IBM Institute for Business Value. Device democracy-saving the future of the Internet of Things[R/OL]. (2017-10-02)[2017-12-20] . http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=PM&subtype=XB&htmlfid=GBE03620USEN.
[9] 赵赫, 李晓风, 占礼葵, 等. 基于区块链技术的采样机器人数据保护方法[J]. 华中科技大学学报:自然科学版, 2015, 43(s1):216-219 ZHAO He, LI Xiao-feng, ZHAN Li-kui, et al. Data integrity protection method for microorganism sampling robots based on blockchain technology[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2015, 43(s1):216-219
[10] LAMPORT L. The Byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982, 4(3):382-401.
[11] 袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4):481-494 YUAN Yong, WANG Fei-Yue. Blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016, 42(4):481-494
[12] 钱卫宁, 邵奇峰, 朱燕超, 等. 区块链与可信数据管理:问题与方法[J]. 软件学报, 2018, 29(1):150-159 QIAN Wei-ning, SHAO Qi-feng, ZHU Yan-chao, et al. Research problems and methods in blockchain and trusted data management[J]. Journal of Software, 2018, 29(1):150-159
[13] Ethereum White Paper. A next-generation smart contract and decentralized application platform[R/OL].(2015-11-12)[2017-12-20] . https://github.com/ethereum/wiki/wiki/WhitePaper.
[14] CONOSCENTI M, VETRÒ A, MARTIN J C D. Blockchain for the Internet of Things:a systematic literature review[C]//Computer Systems and Applications. Agadir:IEEE, 2017:2161-5330.
[15] JOHNSON D, MENEZES A, VANSTONE S. The elliptic curve digital signature algorithm (ECDSA)[J]. International Journal of Information Security, 2001, 1(1):36-63.
[16] U.S. Department of Commerce. Secure hash standard-federal information processing standards publication 180-4[S/OL].[S. l.]:Federal Information Processing Standards Publication, 2012:21-23[2017-12-20] . https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf.
[17] MERKLE R C. A digital signature based on a conventional encryption function[C]//A Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology. Santa Barbara:CRYPTO, 1987, 293, 369-378.
[18] KHALIQUE A, SINGH K, SOOD S. Implementation of elliptic curve digital signature algorithm[J]. International Journal of Computer Applications, 2011, 2(2):21-27.
[19] NAKAMOTO S. Bitcoin:a peer-to-peer electronic cash system[EB/OL].(2018)[2017-12-20] . https://bitcoin.org/bitcoin.pdf.
[20] TSCHORSCH F, SCHEUERMANN B. Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys and Tutorials, 2016, 18(3):2084-2123.
[21] EYAL I, SIRER E G. Majority is not enough:bitcoin mining is vulnerable[C]//International Conference on Financial Cryptography and Data Security. Christ Church:International Financial Cryptography Association, 2014:436-454.
[22] ANTONOPOULOS A M. Mastering Bitcoin[M/OL].[S.l.]:O'Reilly Media, 2015:210-218[2017-12-20] . http://chimera.labs.oreilly.com/books/1234000001802/index.html.
[23] POON J, DRYJA T. The bitcoin lightning network:scalable off-chain instant payments[EB/OL].[2016-01-14] . https://lightning.network/lightning-network-paper.pdf.
[24] POON J, BUTERIN V. Plasma:scalable autonomous smart contracts[EB/OL].[2017-08-11] . http://plasma.io/plasma.pdf.
[25] KANG J, YU R, HUANG X, et al. Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6):3154-3164.

[1] WANG Liang, YU Zhi-wen, GUO Bin, XIONG Fei. Crowd sensing socialization task allocation based on mobile social network[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1709-1716.
[2] YANG Xiao-Hu, LI Jue-Feng. Optimizing SOA performance in multinetwork environment based on
hillclimbing clustering algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 738-742.
[3] TAN Zhi-Feng, TAN Shan-Guang. Realization for object persistence of SILVER object-oriented database on JAVA[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1032-1036.
[4] GUO Xing-Meng, GUO Tian-Chen, ZHANG San-Yuan. Middleware framework based on management information ontology and  request functional components[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 844-848.