Please wait a minute...
J4  2011, Vol. 45 Issue (12): 2079-2087    DOI: 10.3785/j.issn.1008-973X.2011.12.002
    
Two-layer predictive control of multi-variable system
with integrating element
ZOU Tao, LI Hai-qiang
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem that the model of steady state optimization cannot be formed for one-order integrating process in twolayer predictive control, the concept of “critical steady state” was proposed and then the “point” model and the establishment conditions of “critical steady state”, i.e. stability condition, were presented. Thus the mathematic optimization model was built based on the steady property of one-order integral process. Two-layer predictive control is divided into upper steady state optimization layer and lower dynamic control layer. The optimal steady output target is obtained by the solution of the model of steady state optimization in the upper layer and also tracked by the model based control in the lower dynamic control layer. The solution process for the optimization problem is divided into two stages: feasibility stage and optimization stage. In the feasibility stage, the feasibility judgment and soft constraint adjustment method are presented for the stability condition of integrating process to guarantee the existence of the solution in the optimization stage. In simulation, the presented integral type twolayer predictive control algorithm is implemented on a multivariable integrating process. The optimal steady state output target can be calculated and also quickly tracked by this optimal control system.



Published: 01 December 2011
CLC:  TP 273  
Cite this article:

ZOU Tao, LI Hai-qiang. Two-layer predictive control of multi-variable system
with integrating element. J4, 2011, 45(12): 2079-2087.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.12.002     OR     https://www.zjujournals.com/eng/Y2011/V45/I12/2079


具有积分环节多变量系统的双层结构预测控制

针对双层结构预测控制面对一阶积分过程时无法形成稳态优化模型的问题,基于一阶积分过程的稳态特性,提出“临界稳态”的概念,给出了“临界稳态”状况下的“点”模型,以及“临界稳态”的成立条件(稳定性条件),由此建立积分过程的稳态优化数学模型.双层结构预测控制分为上层稳态优化和下层动态控制.上层稳态优化通过求解稳态优化数学模型得到最优稳态输出目标,下层动态控制使用基于模型的控制方法实现最优稳态目标的跟踪控制.将稳态优化问题求解过程中划分为两个阶段:可行性阶段与最优化阶段.在可行性阶段针对积分过程稳态优化模型中的稳定性条件给出相应的可行性判定与软约束调整算法,从而确保了最优化阶段解的存在性.仿真中,将所提出的积分型双层结构预测控制算法应用在一个多变量积分过程上.该优化控制系统一方面可以计算出系统的最优稳态输出目标,另一方面实现了对该目标的快速跟踪控制.

[1] PANNOCCHIA R, RAWLINGS J B, WRIGHT S J, Fast, largescale model predictive control by partial enumeration \
[J\]. Automatica, 2007, 43 (5): 852-860.
[2] KOUVARITAKIS B, ROSSITER J A, SCHUURMANS J, Efficient robust predictive control \
[J\]. IEEE Transactions on Automatic Control, 2000, 45 (8): 1545-1549.
[3] JOHANSEN T, GRANCHAROVA A, Approximate explicit constrained linear model predictive control via orthogonal search tree \
[J\]. IEEE Transactions on Automatic Control ,2003, 48 (5): 810-815.
[4] SCHMID C, BIEGLER L T, Quadratic programming methods for reduced hessian SQP \
[J\]. Computers and Chemical Engineering,1994, 18 (9): 817-832.
[5] BIEGLER T, Quadratic programming algorithms for largescale model predictive control \
[J\]. Journal of Process Control, 2002, 12 (7): 775-795.
[6] QIN S J, BADGWELL T A. A survey of industrial model predictive control technology [J]. Control Engineering Practice, 2003, 11(7): 733-764.
[7] KASSMANN D E, BADGWELL T A, HAWKINS R B. Robust steadystate target calculation for model predictive control [J]. AICHE, 2000, 46(5): 1007-1024.
[8] RAO C V, RAWLINGS J B. Steady states and constraints in model predictive control [J]. AIChE J, 1999, 45(6): 1266-1278.
[9] NIKANDROV A, SWARTZ C L E. Sensitivity analysis of LPMPC cascade control systems [J]. Journal of Process Control, 2009, 19(1): 16-24.
[10] YING C M, JOSEPH B. Performance and stability analysis of LPMPC and QPMPC cascade control systems [J]. AICeE J, 1999, 45(7): 1521-1533.
[11] SCATTOLINI R. Architectures for distributed and hierarchical model predictive controla review [J]. Journal of Process Control, 2009, 19(5): 723-731.

[12] XU F W, HUANG B, AKANDE S. Performance assessment of model predictive control for variability and constraint tuning [J]. Industrial Engineering Chemical Research, 2007, 46, 1208-1219.
[13] 席裕庚,李慷.工业过程有约束多目标多自由度的可行性分析[J].控制理论与应用,1995,12(5): 590-596.
XI Yugeng, LI Kang. Feasibility analysis of constraint multiobjective multidegreeoffreedom optimization control in industry processes [J]. Control Theory and Applications, 1995, 12(5): 590-596.
[14] 席裕庚,谷寒雨.有约束多目标多自由度优化控制的可行性分析及软约束调整[J].自动化学报,1998,24(6): 726-731.
XI Yugeng, GU Hanyu. Feasibility analysis and soft constraint adjustment of CMMO [J]. ACTA Automatica Sinica, 1998, 24(6): 726-731.
[15] TYLER M, MORARI M. Propositional logic in control and monitoring problems [J]. Automatica, 1999, 35: 565-582.
[16] GUPTA Y P. Control of integrating process using dynamic matrix control [J]. Trans IChemE, 1998, 76(4): 465-470.
[17] 钱积新,赵均,徐祖华.预测控制[M].北京:化学工业出版社,2009: 162-165.
[18] 邹涛,丁宝苍,张端.模型预测控制工程应用导论[M].北京:化学工业出版社,2010: 76-114.
[19] EATON J W, RAWLINGS J B. Model predictive control of chemical process[J]. Chemical Engineering Science, 1992, 47(4): 705-720.
[20] 邹涛,刘红波,李少远.锅炉汽包水位非自衡系统的预测控制[J].控制理论与应用,2004,21(3): 386-390.
ZOU Tao, LIU Hongbo, LI Shaoyuan. Dynamic matrix control algorithm on the boiler level integral process [J]. Control Theory and Applications, 2004, 21(3): 386-390.

[1] CHENG Sen-lin, LI Lei, ZHU Bao-wei, CHAI Yi. Computing method of RSSI probability centroid for location in WSN[J]. J4, 2014, 48(1): 100-104.
[2] FANG Qiang, CHEN Li-peng, FEI Shao-hua, LIANG Qing-xiao, LI Wei-ping. Model reference adaptive control system design of localizer[J]. J4, 2013, 47(12): 2234-2242.
[3] LUO Ji-Liang, WANG Fei,SHAO Hui,ZHAO Liang-Xu. Optimal Petri-net supervisor synthesis based on the constraint transformation[J]. J4, 2013, 47(11): 2051-2056.
[4] REN Wen, XU Bu-gong. Development of multi-speed electronic let-off system for warp knitting machine based on FI-SNAPID algorithm[J]. J4, 2013, 47(10): 1712-1721.
[5] LI Qi-an, JIN Xin. Approximate decoupling multivariable generalized predictive control of diagonal CARIMA model[J]. J4, 2013, 47(10): 1764-1769.
[6] YE Ling-yun,CHEN Bo,ZHANG Jian,SONG Kai-chen. Feedback control of high precision dynamic standard source based on ripple-free deadbeat algorithm[J]. J4, 2013, 47(9): 1554-1558.
[7] MENG De-yuan, TAO Guo-liang, QIAN Peng-fei, BAN Wei. Adaptive robust control of pneumatic force servo system[J]. J4, 2013, 47(9): 1611-1619.
[8] YE Ling-jian, MA Xiu-shui. Optimal control strategy for chemical processes
based on soft-sensoring technique
[J]. J4, 2013, 47(7): 1253-1257.
[9] HUANG Xiao-shuo,HE Yan,JIANG Jing-ping. Internet based control strategy for brushless DC motor drive systems [J]. J4, 2013, 47(5): 831-836.
[10] HE Nai-bao, GAO Qian, XU Qi-hua, JIANG Chang-sheng. Anti-interference control of NSV based on adaptive observer[J]. J4, 2013, 47(4): 650-655.
[11] ZHU Yu-chen, FENG Dong-qin, CHU Jian. EPA based communication scheduling algorithm and
control scheme for block stream
[J]. J4, 2012, 46(11): 2097-2102.
[12] ZHU Kang-wu, GU Lin-yi, MA Xin-jun, XU Ben-tao. Studies on multivariable robust output feedback control for
underwater vehicles
[J]. J4, 2012, 46(8): 1397-1406.
[13] LIU Zhi-peng, YAN Wen-jun. Intelligent modeling and compound control of pre-grinding system[J]. J4, 2012, 46(8): 1506-1511.
[14] FEI Shao-hua,FANG Qiang,MENG Xiang-lei,KE Ying-lin. Countersink depth control of robot drilling based on pressure
foot displacement compensation
[J]. J4, 2012, 46(7): 1157-1161.
[15] YU Xiao-ming, JIANG Jing-ping. Adaptive networked control system based on delay prediction
using neural network
[J]. J4, 2012, 46(2): 194-198.