Please wait a minute...
J4  2013, Vol. 47 Issue (10): 1764-1769    DOI: 10.3785/j.issn.1008-973X.2013.10.010
    
Approximate decoupling multivariable generalized predictive control of diagonal CARIMA model
LI Qi-an, JIN Xin
School of Information and Control Engineering, Liaoning Shihua University, Fushun 113001, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An approximate decoupling multivariable generalized predictive control of diagonal controlled auto-regressive integrated moving average (CARIMA) model was proposed for strong coupling existing in multivariable system. According to the feature of a diagonal CARIMA model whose matrices C and A were chosen to be diagonal, the prediction and control problem of a multi-input and multi-output (MIMO) process was transformed into generating a set of optimal prediction and control for a series of multi-input single-output processes, which weakened the coupling of outputs in some measure. The weight coefficients of tracking error in cost function were real-time adjusted according to the difference of the model prediction value and the reference trajectory to further reduce the coupling among outputs. The basic idea of weight coefficients adjusting is that the weight coefficient of each output tracing error is composed of weighing error square sum of deviation of other output at same sampling time point. When one output deviating from its trajectory, the weight coefficients of tracking error of other outputs will be increased correspondingly to eliminate the possible disturbance caused by that output deviating and gain approximate decoupling. The comparison experiments were made on a greenhouse temperature and relative humidity control system using single variable GPC, multivariable GPC, decoupling MGPC with reference observation, and the approximate decoupling MGPC of diagonal CARIMA model developed respectively. Simulation results show that approximate decoupling method has a smooth and steady control and can remarkably reduce the disturbance among outputs.



Published: 01 October 2013
CLC:  TP 273  
Cite this article:

LI Qi-an, JIN Xin. Approximate decoupling multivariable generalized predictive control of diagonal CARIMA model. J4, 2013, 47(10): 1764-1769.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.10.010     OR     http://www.zjujournals.com/eng/Y2013/V47/I10/1764


对角CARIMA模型多变量广义预测近似解耦控制

针对多变量系统中存在的强耦合,提出基于对角CARIMA模型的多变量广义预测控制近似解耦算法.根据对角CARIMA模型中的A和C矩阵为对角形式的特点,将多输入多输出系统分解为多个多输入单输出系统进行预测和控制,一定程度上降低了变量之间的耦合性.根据模型预测值与参考轨迹之间的偏差实时调整目标函数中跟踪误差的加权系数,达到进一步降低各个回路之间耦合的目的.加权系数调整的基本原则是,每个输出跟踪误差的加权系数是由其他输出在同时刻偏离参考轨迹的加权误差平方和构成.当某个输出偏离目标值时,其他输出的跟踪误差权值相对增大,以避免输出之间的相互扰动,达到近似解耦的目的.利用单变量GPC、多变量MGPC、基于设定值观测器解耦的MGPC以及提出的近似解耦方法,分别对温室温度和相对湿度控制系统进行仿真实验.仿真结果显示,近似解耦算法控制平稳,输出变量之间的相互扰动显著降低.

[1] 王东风,李遵基,宋之平.基于参数自整定的再热汽温解耦预测控制[J].华北电力大学学报,2001,28(2): 34-39.

WANG Dongfeng, LI Zunji, SONG Zhiping. Adaptive dynamic matrix control with design parameters’  fuzzy selftuning

for reheated stream temperature system [J]. Journal of North China Electric Power University, 2001, 28(2): 34-39.

[2] 薛美盛,樊弟,魏衡华.多变量系统的广义预测控制解耦设计[J].控制工程,2011,18(1): 39-42.

XUE Meisheng, FAN Di, WEI Henghua. Decoupling design of generalized predictive control for multivariable systems [J

]. Control Engineering of China, 2011, 18(1): 39-42.

[3] 柴天佑,王纲.精馏塔的自适应解耦控制[J].控制理论与应用,1992,9(2): 187-192.

CHAI Tianyou, WANG Gang. Adaptive decoupling control of a distillation column [J]. Control Theory and Applications,

1992, 9(2): 187192.

[4] 石宇静,柴天佑. 基于神经网络与多模型的非线性自适应广义预测解耦控制[J]. 控制理论与应用,2008,25(4): 634-640.

SHI Yujing, CHAI Tianyou. Nonlinear adaptive decoupling generalized predictive control using neural networks and

multiple models [J]. Control Theory and Applications, 2008, 25(4): 634-640.

[5] 王东风.多变量系统的广义预测控制解耦设计[J].电机与控制学报,2000,4(4): 243-246.

WANG Dongfeng. Decoupling design of generalized predictive control for multivariable control system [J]. Electric

Machines and Control, 2000, 4(4): 243-246.

[6] CHI H I, TSAI C C. Adaptive decoupling predictive temperature control for an extrusion barrel in a plastic

injection molding process [J]. IEEE Transactions on Industrial Electronics, 2001, 48(5): 968-975.

[7] CHAI T, MAO K, QIN X. Decoupling design of multivariable generalized predictive control [J]. International

Journal of Adaptive Control and Signal Processing, 1999, 13(5): 183-196.

[8] BEGO O, PERIC N, PETROVIC I. Decoupling multivariable generalized predictive control with reference observation [C

]∥10th Mediterranean Electrotechnical Conference.  Cyprus: IEEE, 2000, 2(3): 819-822.

[9] 李奇安,褚健.对角CARIMA模型多变量广义预测控制[J].浙江大学学报:工学版,2006,40(4): 541-545.

LI Qian, CHU Jian. Multivariable generalized predictive control for diagonal CARIMA model [J]. Journal of Zhejiang

University: Engineering Science, 2006, 40(4): 541-545.

[10] 李奇安,褚健.对角CARIMA模型多变量广义预测控制改进算法[J].控制理论与应用,2007,24(3): 423-426.

LI Qi-an, CHU Jian. Improved algorithm for multivariable generalized predictive control of diagonal CARIMA model [J].

Control Theory and Applications, 2007, 24(3): 423426.

[11] 李奇安,褚健.对角CARIMA模型多变量广义预测控制器系数直接算法[J].自动化学报,2007, 33(1): 59-65.

LI Qi-an, CHU Jian. Direct algorithm for multivariable generalized predictive controller’s coefficients of diagonal

CARIMA model [J]. ACTA Automatica Sinica, 2007, 33(1): 59-65.

[12] 李奇安,李平,李悦.对角CARIMA模型输入输出约束自适应广义预测控制[J].仪器仪表学报,2008,29(7): 1483-1488.

LI Qi-an, LI Ping, LI Yue. Input and output constrained adaptive generalized predictive control for diagonal CARIMA model

[J]. Chinese Journal of Scientific Instrument, 2008, 29(7): 1483-1488.

[13] 《运筹学》教材编写组.运筹学[M].北京:清华大学出版社, 2005.

[14] CAMACHO E F, BORDONS C. Model predictive control  [M]. London: Springer, 2004.

[1] CHENG Sen-lin, LI Lei, ZHU Bao-wei, CHAI Yi. Computing method of RSSI probability centroid for location in WSN[J]. J4, 2014, 48(1): 100-104.
[2] FANG Qiang, CHEN Li-peng, FEI Shao-hua, LIANG Qing-xiao, LI Wei-ping. Model reference adaptive control system design of localizer[J]. J4, 2013, 47(12): 2234-2242.
[3] LUO Ji-Liang, WANG Fei,SHAO Hui,ZHAO Liang-Xu. Optimal Petri-net supervisor synthesis based on the constraint transformation[J]. J4, 2013, 47(11): 2051-2056.
[4] REN Wen, XU Bu-gong. Development of multi-speed electronic let-off system for warp knitting machine based on FI-SNAPID algorithm[J]. J4, 2013, 47(10): 1712-1721.
[5] MENG De-yuan, TAO Guo-liang, QIAN Peng-fei, BAN Wei. Adaptive robust control of pneumatic force servo system[J]. J4, 2013, 47(9): 1611-1619.
[6] YE Ling-yun,CHEN Bo,ZHANG Jian,SONG Kai-chen. Feedback control of high precision dynamic standard source  based on ripple-free deadbeat algorithm[J]. J4, 2013, 47(9): 1554-1558.
[7] YE Ling-jian, MA Xiu-shui. Optimal control strategy for chemical processes
based on soft-sensoring technique
[J]. J4, 2013, 47(7): 1253-1257.
[8] HUANG Xiao-shuo,HE Yan,JIANG Jing-ping. Internet based control strategy for brushless DC motor drive systems    [J]. J4, 2013, 47(5): 831-836.
[9] HE Nai-bao, GAO Qian, XU Qi-hua, JIANG Chang-sheng. Anti-interference control of NSV based on adaptive observer[J]. J4, 2013, 47(4): 650-655.
[10] ZHU Yu-chen, FENG Dong-qin, CHU Jian. EPA based communication scheduling algorithm and
control scheme for block stream
[J]. J4, 2012, 46(11): 2097-2102.
[11] ZHU Kang-wu, GU Lin-yi, MA Xin-jun, XU Ben-tao. Studies on multivariable robust output feedback control for
underwater vehicles
[J]. J4, 2012, 46(8): 1397-1406.
[12] LIU Zhi-peng, YAN Wen-jun. Intelligent modeling and compound control of pre-grinding system[J]. J4, 2012, 46(8): 1506-1511.
[13] FEI Shao-hua,FANG Qiang,MENG Xiang-lei,KE Ying-lin. Countersink depth control of robot drilling based on pressure
foot displacement compensation
[J]. J4, 2012, 46(7): 1157-1161.
[14] YU Xiao-ming, JIANG Jing-ping. Adaptive networked control system based on delay prediction
using neural network
[J]. J4, 2012, 46(2): 194-198.
[15] LUO Li-hua, GONG Li-long, LI Ping, WANG Hui. Two-mode adaptive cruise control design with
humans’ driving habits consideration
[J]. J4, 2011, 45(12): 2073-2078.