Please wait a minute...
J4  2012, Vol. 46 Issue (11): 2097-2102    DOI: 10.3785/j.issn.1008-973X.2012.11.023
    
EPA based communication scheduling algorithm and
control scheme for block stream
ZHU Yu-chen, FENG Dong-qin, CHU Jian
Institute of CyberSystems and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to achieve the service integration of audio/video stream to the EPA control bus, we proposed a communication scheduling application algorithm based on EPA, according to the transmission characteristics of audio/video stream, and with the realtime requirement of control data transmission and block stream’s constraints. This algorithm defines audio/video stream as “block stream”, meanwhile giving its mathematical model, and considers block stream as period data, takes the control data’s delay, block’s period and delay jitter requirements as constraints to schedule the width of micro-cycle; and schedules the time slice to divide the same block to multi micro cycles, in order to fully utilize the bandwidth. This algorithm can ensure the stability of EPA network and control’s real-time, and can satisfy the fluency of block stream. In a practical complex transmission application of control data and video, the delay jitter of video met the requirement, with no disturbance to control data meanwhile, thus the validity of this algorithm is examined.



Published: 11 December 2012
CLC:  TP 273  
Cite this article:

ZHU Yu-chen, FENG Dong-qin, CHU Jian. EPA based communication scheduling algorithm and
control scheme for block stream. J4, 2012, 46(11): 2097-2102.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.11.023     OR     http://www.zjujournals.com/eng/Y2012/V46/I11/2097


基于EPA的块数据流通信调度与控制

为了实现音视频向工业实时以太网(EPA)控制总线的业务融合,针对音视频传输特点,结合控制数据的实时性要求,提出一种基于EPA的通信调度算法.通过定义“块数据流”, 给出数学模型和网络约束条件,并将块数据流视为周期数据,以控制数据延时、块数据流自由周期和块数据流延时抖动为约束,规划宏周期调度;为了充分利用带宽,将同一数据块分割至多个宏周期以规划时间片.算法可保证EPA网络稳定性和控制实时性,且满足块数据流的流畅性需求.实际应用中将视频流与控制数据复合传输,结果表明,在不干扰控制数据传输的同时,延时抖动满足系统要求,算法有效性得到验证.

[1] BRACKNELL D R. The MILSTD1553B data bus: What does the future hold? [J]. The Aeronautical Journal, 2007,111(1118):231-246.
[2] IEC 6178425. Industrial communication networks Part 2: Additional fieldbus profiles for realtime networks based on ISO/IEC 88023[S]. Switzerland: International Electrotechnical Commission, 2009.
[3] IEC 6178421. Industrial communication networks Part 2: Additional fieldbus profiles for realtime networks based on ISO/IEC 88023[S]. Switzerland: International Electrotechnical Commission, 2009.
[4] IEC 61784212. Industrial communication networks Part 2: Additional fieldbus profiles for realtime networks based on ISO/IEC 88023[S]. Switzerland: International Electrotechnical Commission, 2009.
[5] IEC 61784216. Industrial communication networks Part 2: Additional fieldbus profiles for realtime networks based on ISO/IEC 88023[S]. Switzerland: International Electrotechnical Commission, 2009.
[6] HONG S H. Bandwidth allocation scheme for cyclicservice fieldbus networks [J]. IEEE/ASME Transactions on Mechatronics. 2001,2(6):197-204.
[7] IETF RFC3550STD0064. RTP: A transport protocol for realtime applications [S]. [S. l.]:The Internet Society (ISOC),2003.
[8] IEC 61784214. Industrial communication networks Part 2: Additional fieldbus profiles for realtime networks based on ISO/IEC 88023[S]. Switzerland: International Electrotechnical Commission, 2009.
[9] 鲁立,冯冬芹,禇健,等. 用于EPA网络的实时调度方案[J]. 东南大学学报:自然科学版. 2009,39(s1):210-214.
LU Li, FENG Dongqin, CHU Jian, et al. A realtime scheduling scheme for EPA networks [J]. Journal of Southeast University :Natural Science Edition,2009,39(s1):210-214.

[1] CHENG Sen-lin, LI Lei, ZHU Bao-wei, CHAI Yi. Computing method of RSSI probability centroid for location in WSN[J]. J4, 2014, 48(1): 100-104.
[2] FANG Qiang, CHEN Li-peng, FEI Shao-hua, LIANG Qing-xiao, LI Wei-ping. Model reference adaptive control system design of localizer[J]. J4, 2013, 47(12): 2234-2242.
[3] LUO Ji-Liang, WANG Fei,SHAO Hui,ZHAO Liang-Xu. Optimal Petri-net supervisor synthesis based on the constraint transformation[J]. J4, 2013, 47(11): 2051-2056.
[4] REN Wen, XU Bu-gong. Development of multi-speed electronic let-off system for warp knitting machine based on FI-SNAPID algorithm[J]. J4, 2013, 47(10): 1712-1721.
[5] LI Qi-an, JIN Xin. Approximate decoupling multivariable generalized predictive control of diagonal CARIMA model[J]. J4, 2013, 47(10): 1764-1769.
[6] YE Ling-yun,CHEN Bo,ZHANG Jian,SONG Kai-chen. Feedback control of high precision dynamic standard source  based on ripple-free deadbeat algorithm[J]. J4, 2013, 47(9): 1554-1558.
[7] MENG De-yuan, TAO Guo-liang, QIAN Peng-fei, BAN Wei. Adaptive robust control of pneumatic force servo system[J]. J4, 2013, 47(9): 1611-1619.
[8] YE Ling-jian, MA Xiu-shui. Optimal control strategy for chemical processes
based on soft-sensoring technique
[J]. J4, 2013, 47(7): 1253-1257.
[9] HUANG Xiao-shuo,HE Yan,JIANG Jing-ping. Internet based control strategy for brushless DC motor drive systems    [J]. J4, 2013, 47(5): 831-836.
[10] HE Nai-bao, GAO Qian, XU Qi-hua, JIANG Chang-sheng. Anti-interference control of NSV based on adaptive observer[J]. J4, 2013, 47(4): 650-655.
[11] LIU Zhi-peng, YAN Wen-jun. Intelligent modeling and compound control of pre-grinding system[J]. J4, 2012, 46(8): 1506-1511.
[12] ZHU Kang-wu, GU Lin-yi, MA Xin-jun, XU Ben-tao. Studies on multivariable robust output feedback control for
underwater vehicles
[J]. J4, 2012, 46(8): 1397-1406.
[13] FEI Shao-hua,FANG Qiang,MENG Xiang-lei,KE Ying-lin. Countersink depth control of robot drilling based on pressure
foot displacement compensation
[J]. J4, 2012, 46(7): 1157-1161.
[14] YU Xiao-ming, JIANG Jing-ping. Adaptive networked control system based on delay prediction
using neural network
[J]. J4, 2012, 46(2): 194-198.
[15] ZOU Tao, LI Hai-qiang. Two-layer predictive control of multi-variable system
with integrating element
[J]. J4, 2011, 45(12): 2079-2087.