Please wait a minute...
J4  2012, Vol. 46 Issue (8): 1397-1406    DOI: 10.3785/j.issn.1008-973X.2012.08.007
    
Studies on multivariable robust output feedback control for
underwater vehicles
ZHU Kang-wu, GU Lin-yi, MA Xin-jun, XU Ben-tao
The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

For the 6DOF (degrees of freedom) position and attitude control of underwater vehicles with large parameter uncertainties and only position and angle measurement, a novel nonlinear control algorithm based on adaptive gain smooth sliding observer and multivariable integrated backstepping controller was designed to realize the robust output feedback control of underwater vehicles. By Lyapunov stability design method, the stability of observercontroller system was guaranteed. The adaptive gain smooth sliding observer eliminates the high frequency switching that usually appeared in traditional sliding observer, and obtains a smooth velocity estimation. And in the presence of model uncertainties and bounded unknown disturbances, the velocity estimation error will converge into a small ball field by exponential speed. The multivariable integrated backstepping controller can also guarantee the tracking error converge into a small ball field. For the 6DOF control of Seaking ROV which is developing in ZHEJIANG university, some comparative simulation results were performed using new proposed controller and traditional PID cotnroller respectively. The simulation results prove that in the presence of parameter uncertainties, unknown disturbances and measurement noise, the new proposed controller has strong robustness, and the underwater vehicle can track the desired trajectory very well with good dynamic performance and steady accuracy at the same time. Its performance is better than PID controller obviously, and the restriction that the set point of heading can not greater than 90 degrees in PID controller has been removed.



Published: 23 September 2012
CLC:  TP 273  
Cite this article:

ZHU Kang-wu, GU Lin-yi, MA Xin-jun, XU Ben-tao. Studies on multivariable robust output feedback control for
underwater vehicles. J4, 2012, 46(8): 1397-1406.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.08.007     OR     http://www.zjujournals.com/eng/Y2012/V46/I8/1397


水下运载器多变量鲁棒输出反馈控制方法

针对存在较大参数不确定性和仅具有位置、姿态测量的水下运载器的六自由度位姿控制难题,提出一种基于自适应平滑增益滑模观测器和多变量积分Backstepping控制器的非线性控制方法.解决水下运载器的鲁棒输出反馈控制问题,使用基于Lyapunov稳定性理论的设计方法保证观测器控制器系统的稳定性.设计的自适应平滑增益滑模观测器,克服常规滑模观测器中所存在的高频颤振现象,从而获得较平滑的速度估计值.当存在模型不确定性和有界未知干扰时,可以保证速度估计误差以指数速率收敛至较小的球域内.设计的多变量积分Backstepping控制器,可以保证系统的跟踪误差同样收敛至较小的球域内.以浙江大学正在研制的海王号ROV六自由度控制为研究对象,使用所提出的控制方法与传统PID控制器进行对比仿真研究.仿真结果表明,当存在较大参数不确定性、较强未知外干扰和测量噪声时,所提出的控制方法具有较强的鲁棒性能,可以很好地跟踪参考轨迹,获得较好的动态性能和稳态控制精度.性能明显优于常规PID控制器,并且解决了PID控制器所存在的转艏角设定值不能大于90°的问题.

[1] 施生达.潜艇操纵性[M].北京:国防工业出版社,1995: 207-229.
[2] YOERGER D R, NEWMAN J B, SLOTINE J. Supervisory control system for the JASON ROV [J]. IEEE Journal of Oceanic Engineering, 1986, 11(3): 392-400.
[3] YOERGER D R, SLOTINE J. Robust trajectory control of underwater vehicles [J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 462-470.
[4] FENG Z, ALLEN R. Reduced order H∞ control of an autonomous underwater vehicle [J]. Control Engineering Practice, 2004, 15(12): 1511-1520.
[5] KANELLAKOPOULOS I, KOKOTOVIC P V, MORSE A S. Systematic design of adaptive controllers for feedback linearizable systems [J]. IEEE Transactions on Automatic Control, 1991, 36(11): 1241-1253.
[6] LI J H, LEE P M. Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle [J]. Ocean Engineering, 2005, 32(6): 2165-2181.
[7] 高剑,赵宁宁,徐德民,等.水下航行器轴向运动的自适应积分反演跟踪控制[J].兵工学报, 2008, 29(3): 374-378.
GAO Jian, ZHAO Ningning, XU Dimin, et al. Adaptive integral backstepping surge motion tracking control for an underwater Vehicle \[J\]. Acta Armanentarii, 2008, 29(3): 374-378.
[8] KINSEY J C, EUSTICE R M, WHITCOMB L L. A survey of underwater vehicle navigation: Recent advances and new challenges [C]∥ Proceedings of the 7th IFAC Conference of Manoeuvring and Control of Marine Craft (MCMC). Lisbon, Portugal: IFAC, 2006: 1-12.
[9] FOSSEN T I, GRVLEN A. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping [J]. IEEE Transactions on Control Systems Technology, 1998, 6(1): 121-128.
[10] LIU S, WANG D, POH E K. Output feedback control design for station keeping of AUVs under shallow water wave disturbances [J]. International Journal of Robust and Nonlinear Control, 2009, 19 (13): 1447-1470.
[11] REFSNES J E, SRENSEN A J, PETTERSEN K Y. Design of outputfeedback control system for high speed maneuvering of an underwater vehicle [C]∥ Proceedings of the MTS/IEEE Oceans. Washington. DC, USA: IEEE, 2005, 2. 1167-1174.
[12] TURSINI M, PETRELLA R, PARASILITI F. Adaptive slidingmode observer for speedsensorless control of induction motors [J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1380-1386.
[13] CANUDAS W, SLOTINE J J. Sliding observers for robots manipulators [J]. Automatica, 1991, 27(5): 859-864.
[14] FILIPESCU A, DUGARD A, DION L. Adaptive gain sliding observer based sliding controller for uncertain parameters nonlinear systems. Application to flexible joint robots [C]∥ Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI, USA: IEEE, 2003: 3537-3542.
[15] SU Y, MULLER P C, ZHENG C. A simple nonlinear observer for a class of uncertain mechanical systems [J]. IEEE Transactions on Automatic Control, 2007, 52(7): 1340-1345.
[16] FOSSEN T I. Guidance and control of ocean vehicles [M]. New York, John Wiley and Sons, 1998: 18.
[17] 沈永欢.实用数学手册[M].北京:科学出版社,2006: 269.
[18] SLOTINE J, LI W P. Applied nonlinear control [M]. NJ: PranticeHal, 1991: 123-126.

[1] CHENG Sen-lin, LI Lei, ZHU Bao-wei, CHAI Yi. Computing method of RSSI probability centroid for location in WSN[J]. J4, 2014, 48(1): 100-104.
[2] FANG Qiang, CHEN Li-peng, FEI Shao-hua, LIANG Qing-xiao, LI Wei-ping. Model reference adaptive control system design of localizer[J]. J4, 2013, 47(12): 2234-2242.
[3] LUO Ji-Liang, WANG Fei,SHAO Hui,ZHAO Liang-Xu. Optimal Petri-net supervisor synthesis based on the constraint transformation[J]. J4, 2013, 47(11): 2051-2056.
[4] REN Wen, XU Bu-gong. Development of multi-speed electronic let-off system for warp knitting machine based on FI-SNAPID algorithm[J]. J4, 2013, 47(10): 1712-1721.
[5] LI Qi-an, JIN Xin. Approximate decoupling multivariable generalized predictive control of diagonal CARIMA model[J]. J4, 2013, 47(10): 1764-1769.
[6] YE Ling-yun,CHEN Bo,ZHANG Jian,SONG Kai-chen. Feedback control of high precision dynamic standard source  based on ripple-free deadbeat algorithm[J]. J4, 2013, 47(9): 1554-1558.
[7] MENG De-yuan, TAO Guo-liang, QIAN Peng-fei, BAN Wei. Adaptive robust control of pneumatic force servo system[J]. J4, 2013, 47(9): 1611-1619.
[8] YE Ling-jian, MA Xiu-shui. Optimal control strategy for chemical processes
based on soft-sensoring technique
[J]. J4, 2013, 47(7): 1253-1257.
[9] HUANG Xiao-shuo,HE Yan,JIANG Jing-ping. Internet based control strategy for brushless DC motor drive systems    [J]. J4, 2013, 47(5): 831-836.
[10] HE Nai-bao, GAO Qian, XU Qi-hua, JIANG Chang-sheng. Anti-interference control of NSV based on adaptive observer[J]. J4, 2013, 47(4): 650-655.
[11] ZHU Yu-chen, FENG Dong-qin, CHU Jian. EPA based communication scheduling algorithm and
control scheme for block stream
[J]. J4, 2012, 46(11): 2097-2102.
[12] LIU Zhi-peng, YAN Wen-jun. Intelligent modeling and compound control of pre-grinding system[J]. J4, 2012, 46(8): 1506-1511.
[13] FEI Shao-hua,FANG Qiang,MENG Xiang-lei,KE Ying-lin. Countersink depth control of robot drilling based on pressure
foot displacement compensation
[J]. J4, 2012, 46(7): 1157-1161.
[14] YU Xiao-ming, JIANG Jing-ping. Adaptive networked control system based on delay prediction
using neural network
[J]. J4, 2012, 46(2): 194-198.
[15] ZOU Tao, LI Hai-qiang. Two-layer predictive control of multi-variable system
with integrating element
[J]. J4, 2011, 45(12): 2079-2087.