Please wait a minute...
J4  2012, Vol. 46 Issue (8): 1506-1511    DOI: 10.3785/j.issn.1008-973X.2012.08.023
    
Intelligent modeling and compound control of pre-grinding system
LIU Zhi-peng, YAN Wen-jun
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the operational efficiency and energy saving in cement plants. Detailed analysis on the pre-grinding system according its features was given. An intelligent modeling and compoud control system was built to stablize and optimize the pre-grinding system in this paper. The whole system was devided into two sub-systems, one is controlled by fuzzy logic control (FLC), and the other was handled by linear matrix inequality based model predictive control (LMI-based MPC), and the model was acquired by using least square support vector machine (LS-SVM) regression. The control system was implanted with the support of OPC, DCS and C++ techniques. The control system has been deployed in the field to control the pre-grinding system. The result shows that the pre-grinding system gets a good control from the control system, and pre-grinding system is more stable than what it was before.



Published: 23 September 2012
CLC:  TP 273  
Cite this article:

LIU Zhi-peng, YAN Wen-jun. Intelligent modeling and compound control of pre-grinding system. J4, 2012, 46(8): 1506-1511.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.08.023     OR     http://www.zjujournals.com/eng/Y2012/V46/I8/1506


预粉磨系统的智能建模与复合控制

为了提高水泥生产过程中预粉磨系统的运行效率,减少水泥生产过程的能源消耗.针对预粉磨系统的特点,对预粉磨系统进行深入分析,设计一种智能建模与复合控制系统来稳定和优化预粉磨系统的运行状况.将预粉磨系统分为2个不同的子系统,一个子系统通过模糊逻辑控制器(FLC)进行控制,另一个子系统通过基于线性矩阵不等式的模型预测控制方法(LMI-based MPC)进行控制,预测模型则是通过最小二乘支持向量机(LS-SVM)获得.最后通过OPC,DCS和C++等相关软件技术的支持实现了控制系统,并在工业现场应用,对预粉磨系统的运行进行控制.结果表明,控制系统可实现对预粉磨系统的优化控制,预粉磨系统运行的稳定性有了很大的提高.

[1] 邹伟斌,邹捷.预粉磨技术及其应用要点分析[J].水泥科技,2008, (4): 17-21.
ZOU Weibin, ZOU Jie. Pregrinding technology and analysis of its application key points[J]. Science and Technology of Cement, 2008,( 4): 17-21.
[2] DU Xufeng, CHENG Qimin, LU Wenying. Hybrid fuzzy PID decoupling control using in ball mill [C]∥ International Conference on Sustainable Power Generation and Supply. Portugal: [s. n.], 2009: 2494-2498.
[3] MAGNI L, BASTIN G, WERTZ V. Multivariable nonlinear predictive control of cement mills[C]∥ IEEE Transactions on Control Systems Technology. Portugal: [s. n.], 1999: 502-508.
[4] XIE HB, JIANG ZY, LIU XH, et al. Application of fuzzy control of laminar cooling for hot rolled strip[J]. Journal of Materials Processing Technology, 2007,187: 715-719.
[5] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Process Lett, 1999, 3(9): 293-300.
[6] 林伟青,傅建中,许亚洲,等.基于最小二乘支持向量机的数控机床热误差预测[J].浙江大学学报:工学版,2008, 42(6): 905-908.
LIN Weiqing, FU Jianzhong, XU Yazhou,, et al. Thermal error prediction of numerical control machine tools based on least squares support vector machines [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(6): 905-908.
[7] 蒋静坪.计算机实时控制[M].杭州:浙江大学出版社,1992: 55-120.
[8] SOUZA C D, TROFINO A. An LMI approach to stablization of linear discretetime periodic systems [J]. International Journal of Control, 2000, 73(8): 696-703.
[9] KOTHARE M, BALAKRISHNAN V, MORARI M. Robust constrained model predictive control using linear matrix inequalities[J]. Automatica, 1996, 32(10): 1361-1379.
[10] 冯纯伯,田玉平,忻欣.鲁棒控制系统设计[M].南京:东南大学出版社, 1995: 21-73.

[1] CHENG Sen-lin, LI Lei, ZHU Bao-wei, CHAI Yi. Computing method of RSSI probability centroid for location in WSN[J]. J4, 2014, 48(1): 100-104.
[2] FANG Qiang, CHEN Li-peng, FEI Shao-hua, LIANG Qing-xiao, LI Wei-ping. Model reference adaptive control system design of localizer[J]. J4, 2013, 47(12): 2234-2242.
[3] LUO Ji-Liang, WANG Fei,SHAO Hui,ZHAO Liang-Xu. Optimal Petri-net supervisor synthesis based on the constraint transformation[J]. J4, 2013, 47(11): 2051-2056.
[4] LI Qi-an, JIN Xin. Approximate decoupling multivariable generalized predictive control of diagonal CARIMA model[J]. J4, 2013, 47(10): 1764-1769.
[5] REN Wen, XU Bu-gong. Development of multi-speed electronic let-off system for warp knitting machine based on FI-SNAPID algorithm[J]. J4, 2013, 47(10): 1712-1721.
[6] MENG De-yuan, TAO Guo-liang, QIAN Peng-fei, BAN Wei. Adaptive robust control of pneumatic force servo system[J]. J4, 2013, 47(9): 1611-1619.
[7] YE Ling-yun,CHEN Bo,ZHANG Jian,SONG Kai-chen. Feedback control of high precision dynamic standard source  based on ripple-free deadbeat algorithm[J]. J4, 2013, 47(9): 1554-1558.
[8] YE Ling-jian, MA Xiu-shui. Optimal control strategy for chemical processes
based on soft-sensoring technique
[J]. J4, 2013, 47(7): 1253-1257.
[9] HUANG Xiao-shuo,HE Yan,JIANG Jing-ping. Internet based control strategy for brushless DC motor drive systems    [J]. J4, 2013, 47(5): 831-836.
[10] HE Nai-bao, GAO Qian, XU Qi-hua, JIANG Chang-sheng. Anti-interference control of NSV based on adaptive observer[J]. J4, 2013, 47(4): 650-655.
[11] ZHU Yu-chen, FENG Dong-qin, CHU Jian. EPA based communication scheduling algorithm and
control scheme for block stream
[J]. J4, 2012, 46(11): 2097-2102.
[12] ZHU Kang-wu, GU Lin-yi, MA Xin-jun, XU Ben-tao. Studies on multivariable robust output feedback control for
underwater vehicles
[J]. J4, 2012, 46(8): 1397-1406.
[13] FEI Shao-hua,FANG Qiang,MENG Xiang-lei,KE Ying-lin. Countersink depth control of robot drilling based on pressure
foot displacement compensation
[J]. J4, 2012, 46(7): 1157-1161.
[14] YU Xiao-ming, JIANG Jing-ping. Adaptive networked control system based on delay prediction
using neural network
[J]. J4, 2012, 46(2): 194-198.
[15] ZOU Tao, LI Hai-qiang. Two-layer predictive control of multi-variable system
with integrating element
[J]. J4, 2011, 45(12): 2079-2087.