| 交通工程、土木工程 |
|
|
|
|
| 基于机器学习的分形导数 Maxwell 混凝土徐变模型 |
梅生启1,2( ),李旭峰3,4,王兴举2,*( ),刘晓东4,吴黎明5,李星艳4,刘哲4 |
1. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 050043 2. 石家庄铁道大学 交通运输学院,河北 石家庄 050043 3. 山西交通物流集团有限公司,山西 太原 030011 4. 石家庄铁道大学 土木工程学院,河北 石家庄 050043 5. 四川轻化工大学 土木工程学院,四川 自贡 643000 |
|
| Machine-learning based fractal derivative Maxwell concrete creep model |
Shengqi MEI1,2( ),Xufeng LI3,4,Xingju WANG2,*( ),Xiaodong LIU4,Liming WU5,Xingyan LI4,Zhe LIU4 |
1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 2. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 3. Shanxi Transportation Logistics Group Limited Company, Taiyuan 030011, China 4. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 5. School of Civil Engineering, Sichuan University of Science and Engineering, Zigong 643000, China |
引用本文:
梅生启,李旭峰,王兴举,刘晓东,吴黎明,李星艳,刘哲. 基于机器学习的分形导数 Maxwell 混凝土徐变模型[J]. 浙江大学学报(工学版), 2026, 60(3): 487-494.
Shengqi MEI,Xufeng LI,Xingju WANG,Xiaodong LIU,Liming WU,Xingyan LI,Zhe LIU. Machine-learning based fractal derivative Maxwell concrete creep model. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 487-494.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.004
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I3/487
|
| 1 |
VOYIADJIS G Z. Handbook of damage mechanics: nano to macro scale for materials and structures [M]. New York: Springer, 2022.
|
| 2 |
VANDAMME M, ULM F J, BAŽANT Z P Nanogranular origin of concrete creep[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (26): 10552- 10557
|
| 3 |
LYSETT T. Decrease life cycle costs and cost-effective bridge maintenance [EB/OL]. (2019-01-30). https:// cor-tuf.com/decrease-lifecycle-costs-and-increase-longevity-with-cost-effective-bridge-maintenance.html.
|
| 4 |
ACI Committee 209. Prediction of creep, shrinkage, and temperature effects in concrete structures (reapproved 2008): ACI PRC-209-92 [S]. Farmington Hills: ACI, 2008.
|
| 5 |
Comité Euro-International du Béton. Fib model code for concrete structures 2010 [M]. Berlin: Ernst and Sohn, 2013.
|
| 6 |
RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: material model and structural analysis*: model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability [J]. Materials and Structures, 2015, 48(4): 753–770.
|
| 7 |
GARDNER N J, LOCKMAN M J Design provisions for drying shrinkage and creep of normal-strength concrete[J]. ACI Materials Journal, 2001, 98 (2): 159- 167
|
| 8 |
梅生启, 刘晓东, 王兴举, 等 基于参数相关性分析和机器学习算法的高强混凝土徐变预测[J]. 吉林大学学报: 工学版, 2025, 55 (5): 1595- 1603 MEI Shengqi, LIU Xiaodong, WANG Xingju, et al Prediction of high strength concrete creep based on parametric MIC analysis and machine learning algorithm[J]. Journal of Jilin University: Engineering and Technology Edition, 2025, 55 (5): 1595- 1603
doi: 10.13229/j.cnki.jdxbgxb.20230814
|
| 9 |
FENG J, ZHANG H, GAO K, et al A machine learning and game theory-based approach for predicting creep behavior of recycled aggregate concrete[J]. Case Studies in Construction Materials, 2022, 17: e01653
doi: 10.1016/j.cscm.2022.e01653
|
| 10 |
FENG J, ZHANG H, GAO K, et al Efficient creep prediction of recycled aggregate concrete via machine learning algorithms[J]. Construction and Building Materials, 2022, 360: 129497
doi: 10.1016/j.conbuildmat.2022.129497
|
| 11 |
SCHIESSEL H, METZLER R, BLUMEN A, et al Generalized viscoelastic models: their fractional equations with solutions[J]. Journal of Physics A: Mathematical and General, 1995, 28 (23): 6567
doi: 10.1088/0305-4470/28/23/012
|
| 12 |
刘喜, 李振军, 周剑, 等. 钢纤维地聚物轻骨料混凝土受弯构件裂缝特征与分析模型 [EB/OL]. (2025-05-07). https://link.cnki.net/doi/10.13801/j.cnki.fhclxb.20250506.005.
|
| 13 |
CAI W, CHEN W, XU W Characterizing the creep of viscoelastic materials by fractal derivative models[J]. International Journal of Non-Linear Mechanics, 2016, 87: 58- 63
doi: 10.1016/j.ijnonlinmec.2016.10.001
|
| 14 |
尹倩, 龚维明, 戴国亮, 等 分形导数西元流变模型及其工程应用[J]. 岩土工程学报, 2025, 47 (7): 1494- 1503 YIN Qian, GONG Weiming, DAI Guoliang, et al Fractal derivative Nishihara rheology model and its application[J]. Chinese Journal of Geotechnical Engineering, 2025, 47 (7): 1494- 1503
doi: 10.11779/CJGE20240193
|
| 15 |
苏祥龙, 许文祥, 陈文 基于分形导数对非牛顿流体层流的数值研究[J]. 力学学报, 2017, 49 (5): 1020- 1028 SU Xianglong, XU Wenxiang, CHEN Wen Numerical study for laminar flow of non-Newtonian fluid based on fractal derivative[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49 (5): 1020- 1028
doi: 10.6052/0459-1879-16-318
|
| 16 |
刘式达, 付遵涛, 刘式适 间歇湍流的分形特征: 分数维及分数阶导数的应用[J]. 地球物理学报, 2014, 57 (9): 2751- 2755 LIU Shida, FU Zuntao, LIU Shishi Fractal behaviors of intermittent turbulence: applications of fractional dimension and fractional derivatives[J]. Chinese Journal of Geophysics, 2014, 57 (9): 2751- 2755
|
| 17 |
FINDLEY W N, DAVIS F A. Creep and relaxation of nonlinear viscoelastic materials [M]. New York: Courier Corporation, 2013.
|
| 18 |
VANDAMME M, ULM F J Nanoindentation investigation of creep properties of calcium silicate hydrates[J]. Cement and Concrete Research, 2013, 52: 38- 52
doi: 10.1016/j.cemconres.2013.05.006
|
| 19 |
NEVILLE A M, DILGER W H, BROOKS J J. Creep of plain and structural concrete [M]. London: Construction Press, 1983.
|
| 20 |
KOELLER R C Applications of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51 (2): 299- 307
doi: 10.1115/1.3167616
|
| 21 |
SCOTT BLAIR G W Analytical and integrative aspects of the stress-strain-time problem[J]. Journal of Scientific Instruments, 1944, 21 (5): 80
doi: 10.1088/0950-7671/21/5/302
|
| 22 |
MEI S, LI X, WANG X, et al Calculation of short-term creep of concrete using fractional viscoelastic model[J]. Materials, 2023, 16 (12): 4274
doi: 10.3390/ma16124274
|
| 23 |
CAO J, WANG D, ZOU Z, et al Fractional-order Burgers model for coral concrete creep[J]. Engineering Research Express, 2024, 6 (3): 035117
doi: 10.1088/2631-8695/ad777d
|
| 24 |
PODLUBNY I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications [M]. San Diego: Elsevier, 1998.
|
| 25 |
CHEN W Time–space fabric underlying anomalous diffusion[J]. Chaos, Solitons and Fractals, 2006, 28 (4): 923- 929
doi: 10.1016/j.chaos.2005.08.199
|
| 26 |
CHEN W, SUN H, ZHANG X, et al Anomalous diffusion modeling by fractal and fractional derivatives[J]. Computers and Mathematics with Applications, 2010, 59 (5): 1754- 1758
doi: 10.1016/j.camwa.2009.08.020
|
| 27 |
SUN H, MEERSCHAERT M M, ZHANG Y, et al A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media[J]. Advances in Water Resources, 2013, 52: 292- 295
doi: 10.1016/j.advwatres.2012.11.005
|
| 28 |
CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785–794.
|
| 29 |
SHAHRIARI B, SWERSKY K, WANG Z, et al Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104 (1): 148- 175
doi: 10.1109/JPROC.2015.2494218
|
| 30 |
宁成晋. 高强高性能机制砂混凝土关键技术研究 [D]. 广州: 广州大学, 2016. NING Chengjin. A study of key technology of high performance concrete sand [D]. Guangzhou: Guangzhou University, 2016.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|