Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 487-494    DOI: 10.3785/j.issn.1008-973X.2026.03.004
交通工程、土木工程     
基于机器学习的分形导数 Maxwell 混凝土徐变模型
梅生启1,2(),李旭峰3,4,王兴举2,*(),刘晓东4,吴黎明5,李星艳4,刘哲4
1. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 050043
2. 石家庄铁道大学 交通运输学院,河北 石家庄 050043
3. 山西交通物流集团有限公司,山西 太原 030011
4. 石家庄铁道大学 土木工程学院,河北 石家庄 050043
5. 四川轻化工大学 土木工程学院,四川 自贡 643000
Machine-learning based fractal derivative Maxwell concrete creep model
Shengqi MEI1,2(),Xufeng LI3,4,Xingju WANG2,*(),Xiaodong LIU4,Liming WU5,Xingyan LI4,Zhe LIU4
1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3. Shanxi Transportation Logistics Group Limited Company, Taiyuan 030011, China
4. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
5. School of Civil Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
 全文: PDF(1274 KB)   HTML
摘要:

为了解决现有混凝土徐变模型计算复杂且对多源分散数据预测精度有限的问题,通过物理模型与数据驱动融合的方式,结合具有物理意义的分形导数理论与XGBoost机器学习算法,提出可预测的分形导数 Maxwell混凝土徐变模型. 基于从NU混凝土徐变数据库中筛选出的746组试验数据,建立混凝土材料特性、环境条件与分形导数Maxwell模型关键参数(分形阶数和黏性系数)之间的映射关系,采用贝叶斯优化方法确定模型的最优超参数. 研究结果表明,所构建模型在测试集上对分形阶数和黏性系数的预测决定系数分别达到0.919和0.908,在独立的验证集上,预测决定系数的评分为0.909,展现出良好的拟合性能和泛化能力. 与既有模型相比,提出的物理-数据融合模型在保留理论解释性的同时,有效提高了整体的预测精度.

关键词: 混凝土徐变分形导数理论Maxwell模型机器学习算法预测模型    
Abstract:

A predictable fractal derivative Maxwell concrete creep model was proposed to address the problems of complex calculations and limited prediction accuracy for multi-source dispersed data in existing concrete creep models. The fractal derivative theory was combined with the XGBoost machine learning algorithm through a physics-data fusion approach. A mapping relationship between concrete material characteristics, environmental conditions, and the key parameters of the fractal derivative Maxwell model (fractal order and viscosity coefficient) was established based on 746 sets of experimental data selected from the NU concrete creep database. Bayesian optimization was adopted to determine the optimal hyperparameters. The constructed model achieved coefficients of determination (R2) of 0.919 and 0.908 for the prediction of the fractal order and the viscosity coefficient on the test set, respectively. An R2 score of 0.909 was obtained on an independent validation set. These results demonstrate that the model has good fitting performance and generalization capability. The proposed physics-data fusion model improves overall prediction accuracy while retaining theoretical interpretability compared with existing models.

Key words: concrete creep    fractal derivative theory    Maxwell model    machine-learning algorithm    prediction model
收稿日期: 2025-03-09 出版日期: 2026-02-04
:  TU 528  
基金资助: 国家自然科学基金资助项目(52108161);河北省高等学校科学研究资助项目(BJK2024127);石家庄铁道大学土木工程学院自主科研课题(TMXN2201);石家庄铁道大学研究生创新资助项目(YC202407, YC202426).
通讯作者: 王兴举     E-mail: cshqmei@stdu.edu.cn;wangxingju@stdu.edu.cn
作者简介: 梅生启(1990—),男,副教授,从事结构长期性能的研究. orcid.org/0000-0001-5049-393X. E-mail:cshqmei@stdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
梅生启
李旭峰
王兴举
刘晓东
吴黎明
李星艳
刘哲

引用本文:

梅生启,李旭峰,王兴举,刘晓东,吴黎明,李星艳,刘哲. 基于机器学习的分形导数 Maxwell 混凝土徐变模型[J]. 浙江大学学报(工学版), 2026, 60(3): 487-494.

Shengqi MEI,Xufeng LI,Xingju WANG,Xiaodong LIU,Liming WU,Xingyan LI,Zhe LIU. Machine-learning based fractal derivative Maxwell concrete creep model. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 487-494.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.004        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/487

分形黏弹性模型示意图表达式
分形黏性元件$\sigma = {\text{ }}\eta \dfrac{{{\text{d}}\varepsilon }}{{{\text{d}}{t^p}}}$
分形Maxwell模型$\dfrac{{{\text{d}}\varepsilon }}{{{\text{d}}{t^p}}} = \dfrac{1}{E}\dfrac{{{\text{d}}\sigma }}{{{\text{d}}{t^p}}}+\dfrac{\sigma }{\eta }$
分形Kelvin模型$\dfrac{{{\text{d}}\varepsilon }}{{{\text{d}}{t^p}}}+\dfrac{E}{\eta }\varepsilon = \dfrac{\sigma }{\eta }$
表 1  分形导数黏弹性模型的示意图及应力-应变关系
图 1  混凝土徐变数据库的参数分布
图 2  融合建模方法的示意图
图 3  可预测模型的构建过程
图 4  徐变度分形参数的拟合结果
图 5  分形参数拟合的相关性分析
图 6  拟合徐变度与真实徐变度残差
超参数搜索范围
树的最大深度 dmax[3, 20]
学习率 $ \mathit{\alpha } $[0.001, 0.3]
树的数量 M[10, 500]
子节点最小权重 Wmin[1, 7]
分裂阈值 $ \mathit{\gamma } $[0, 1]
样本采样比例 rs[0.6, 1.0]
特征采样比例 rf[0.6, 1.0]
表 2  贝叶斯优化的超参数搜索范围
图 7  R2评分迭代图
图 8  预测值与实测值的散点分布图
图 9  融合模型的评估
1 VOYIADJIS G Z. Handbook of damage mechanics: nano to macro scale for materials and structures [M]. New York: Springer, 2022.
2 VANDAMME M, ULM F J, BAŽANT Z P Nanogranular origin of concrete creep[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (26): 10552- 10557
3 LYSETT T. Decrease life cycle costs and cost-effective bridge maintenance [EB/OL]. (2019-01-30). https:// cor-tuf.com/decrease-lifecycle-costs-and-increase-longevity-with-cost-effective-bridge-maintenance.html.
4 ACI Committee 209. Prediction of creep, shrinkage, and temperature effects in concrete structures (reapproved 2008): ACI PRC-209-92 [S]. Farmington Hills: ACI, 2008.
5 Comité Euro-International du Béton. Fib model code for concrete structures 2010 [M]. Berlin: Ernst and Sohn, 2013.
6 RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: material model and structural analysis*: model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability [J]. Materials and Structures, 2015, 48(4): 753–770.
7 GARDNER N J, LOCKMAN M J Design provisions for drying shrinkage and creep of normal-strength concrete[J]. ACI Materials Journal, 2001, 98 (2): 159- 167
8 梅生启, 刘晓东, 王兴举, 等 基于参数相关性分析和机器学习算法的高强混凝土徐变预测[J]. 吉林大学学报: 工学版, 2025, 55 (5): 1595- 1603
MEI Shengqi, LIU Xiaodong, WANG Xingju, et al Prediction of high strength concrete creep based on parametric MIC analysis and machine learning algorithm[J]. Journal of Jilin University: Engineering and Technology Edition, 2025, 55 (5): 1595- 1603
doi: 10.13229/j.cnki.jdxbgxb.20230814
9 FENG J, ZHANG H, GAO K, et al A machine learning and game theory-based approach for predicting creep behavior of recycled aggregate concrete[J]. Case Studies in Construction Materials, 2022, 17: e01653
doi: 10.1016/j.cscm.2022.e01653
10 FENG J, ZHANG H, GAO K, et al Efficient creep prediction of recycled aggregate concrete via machine learning algorithms[J]. Construction and Building Materials, 2022, 360: 129497
doi: 10.1016/j.conbuildmat.2022.129497
11 SCHIESSEL H, METZLER R, BLUMEN A, et al Generalized viscoelastic models: their fractional equations with solutions[J]. Journal of Physics A: Mathematical and General, 1995, 28 (23): 6567
doi: 10.1088/0305-4470/28/23/012
12 刘喜, 李振军, 周剑, 等. 钢纤维地聚物轻骨料混凝土受弯构件裂缝特征与分析模型 [EB/OL]. (2025-05-07). https://link.cnki.net/doi/10.13801/j.cnki.fhclxb.20250506.005.
13 CAI W, CHEN W, XU W Characterizing the creep of viscoelastic materials by fractal derivative models[J]. International Journal of Non-Linear Mechanics, 2016, 87: 58- 63
doi: 10.1016/j.ijnonlinmec.2016.10.001
14 尹倩, 龚维明, 戴国亮, 等 分形导数西元流变模型及其工程应用[J]. 岩土工程学报, 2025, 47 (7): 1494- 1503
YIN Qian, GONG Weiming, DAI Guoliang, et al Fractal derivative Nishihara rheology model and its application[J]. Chinese Journal of Geotechnical Engineering, 2025, 47 (7): 1494- 1503
doi: 10.11779/CJGE20240193
15 苏祥龙, 许文祥, 陈文 基于分形导数对非牛顿流体层流的数值研究[J]. 力学学报, 2017, 49 (5): 1020- 1028
SU Xianglong, XU Wenxiang, CHEN Wen Numerical study for laminar flow of non-Newtonian fluid based on fractal derivative[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49 (5): 1020- 1028
doi: 10.6052/0459-1879-16-318
16 刘式达, 付遵涛, 刘式适 间歇湍流的分形特征: 分数维及分数阶导数的应用[J]. 地球物理学报, 2014, 57 (9): 2751- 2755
LIU Shida, FU Zuntao, LIU Shishi Fractal behaviors of intermittent turbulence: applications of fractional dimension and fractional derivatives[J]. Chinese Journal of Geophysics, 2014, 57 (9): 2751- 2755
17 FINDLEY W N, DAVIS F A. Creep and relaxation of nonlinear viscoelastic materials [M]. New York: Courier Corporation, 2013.
18 VANDAMME M, ULM F J Nanoindentation investigation of creep properties of calcium silicate hydrates[J]. Cement and Concrete Research, 2013, 52: 38- 52
doi: 10.1016/j.cemconres.2013.05.006
19 NEVILLE A M, DILGER W H, BROOKS J J. Creep of plain and structural concrete [M]. London: Construction Press, 1983.
20 KOELLER R C Applications of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51 (2): 299- 307
doi: 10.1115/1.3167616
21 SCOTT BLAIR G W Analytical and integrative aspects of the stress-strain-time problem[J]. Journal of Scientific Instruments, 1944, 21 (5): 80
doi: 10.1088/0950-7671/21/5/302
22 MEI S, LI X, WANG X, et al Calculation of short-term creep of concrete using fractional viscoelastic model[J]. Materials, 2023, 16 (12): 4274
doi: 10.3390/ma16124274
23 CAO J, WANG D, ZOU Z, et al Fractional-order Burgers model for coral concrete creep[J]. Engineering Research Express, 2024, 6 (3): 035117
doi: 10.1088/2631-8695/ad777d
24 PODLUBNY I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications [M]. San Diego: Elsevier, 1998.
25 CHEN W Time–space fabric underlying anomalous diffusion[J]. Chaos, Solitons and Fractals, 2006, 28 (4): 923- 929
doi: 10.1016/j.chaos.2005.08.199
26 CHEN W, SUN H, ZHANG X, et al Anomalous diffusion modeling by fractal and fractional derivatives[J]. Computers and Mathematics with Applications, 2010, 59 (5): 1754- 1758
doi: 10.1016/j.camwa.2009.08.020
27 SUN H, MEERSCHAERT M M, ZHANG Y, et al A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media[J]. Advances in Water Resources, 2013, 52: 292- 295
doi: 10.1016/j.advwatres.2012.11.005
28 CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785–794.
29 SHAHRIARI B, SWERSKY K, WANG Z, et al Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104 (1): 148- 175
doi: 10.1109/JPROC.2015.2494218
30 宁成晋. 高强高性能机制砂混凝土关键技术研究 [D]. 广州: 广州大学, 2016.
NING Chengjin. A study of key technology of high performance concrete sand [D]. Guangzhou: Guangzhou University, 2016.
[1] 罗向龙,王亚飞,王彦博,王立新. 基于双向门控式宽度学习系统的监测数据结构变形预测[J]. 浙江大学学报(工学版), 2024, 58(4): 729-736.
[2] 李明厚,SELYUTINA Nina ,SMIRNOV Ivan ,张祥,李贝贝,刘元珍,张玉. 基于热裂纹演化的玻化微珠保温混凝土渗透性能分析[J]. 浙江大学学报(工学版), 2023, 57(2): 367-379.
[3] 林晓青,应雨轩,余泓,李晓东,严建华. 流化床垃圾焚烧炉烟气停留时间计算及预测[J]. 浙江大学学报(工学版), 2022, 56(8): 1578-1587.
[4] 赵爽,王奎华,吴君涛. 水平循环荷载下砂土中斜单桩累积变形特性[J]. 浙江大学学报(工学版), 2022, 56(7): 1310-1319.
[5] 于军琪,杨思远,赵安军,高之坤. 基于神经网络的建筑能耗混合预测模型[J]. 浙江大学学报(工学版), 2022, 56(6): 1220-1231.
[6] 李文书,邹涛涛,王洪雁,黄海. 基于双尺度长短期记忆网络的交通事故量预测模型[J]. 浙江大学学报(工学版), 2020, 54(8): 1613-1619.
[7] 黄华,邓文强,李源,郭润兰. 基于空间动力学优化的机床结构件质量匹配设计[J]. 浙江大学学报(工学版), 2020, 54(10): 2009-2017.
[8] 丰明坤,施祥. 视觉特征深度融合的图像质量评价[J]. 浙江大学学报(工学版), 2019, 53(3): 512-521.
[9] 朱剑锋,庹秋水,邓温妮,饶春义,刘浩旭. 镁质水泥复合固化剂固化有机质土的抗压强度模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2168-2174.
[10] 王亮, 於志文, 郭斌. 基于双层多粒度知识发现的移动轨迹预测模型[J]. 浙江大学学报(工学版), 2017, 51(4): 669-674.
[11] 黄克, 周奇才, 赵炯, 熊肖磊. 盾构液压系统状态预测[J]. J4, 2013, 47(8): 1437-1443.
[12] 胡星星,裘乐淼,张树有,张辉. 基于混合响应面法的滚压成型回弹角预测控制及应用[J]. J4, 2013, 47(11): 2010-2019.
[13] 肖冬峰,杨春节,宋执环. 基于改进BP网络的高炉煤气发生量预测模型[J]. J4, 2012, 46(11): 2103-2108.
[14] 张志刚, 周晓军, 李永军, 沈路, 杨富春. 湿式多片换档离合器带排转矩的预测模型[J]. J4, 2011, 45(4): 708-713.
[15] 商秀芹, 卢建刚, 孙优贤. 基于遗传规划的铁矿烧结终点2级预测模型[J]. J4, 2010, 44(7): 1266-1269.