计算机技术、控制工程 |
|
|
|
|
基于多脑区注意力机制胶囊融合网络的EEG-fNIRS情感识别 |
刘悦( ),张雪英*( ),陈桂军,黄丽霞,孙颖 |
太原理工大学 电子信息与光学工程学院,山西 太原 030024 |
|
EEG-fNIRS emotion recognition based on multi-brain attention mechanism capsule fusion network |
Yue LIU( ),Xueying ZHANG*( ),Guijun CHEN,Lixia HUANG,Ying SUN |
College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
刘悦,张雪英,陈桂军,黄丽霞,孙颖. 基于多脑区注意力机制胶囊融合网络的EEG-fNIRS情感识别[J]. 浙江大学学报(工学版), 2024, 58(11): 2247-2257.
Yue LIU,Xueying ZHANG,Guijun CHEN,Lixia HUANG,Ying SUN. EEG-fNIRS emotion recognition based on multi-brain attention mechanism capsule fusion network. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2247-2257.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.006
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2247
|
1 |
吴朝晖 类脑研究: 为人类构建超级大脑[J]. 浙江大学学报: 工学版, 2020, 54 (3): 425- 426 WU Zhaohui Cybrain: building superbrain for humans[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 425- 426
|
2 |
QIU L, ZHONG Y, XIE Q, et al Multi-modal integration of EEG-fNIRS for characterization of brain activity evoked by preferred music[J]. Frontiers in Neurorobotics, 2022, 16: 823435
doi: 10.3389/fnbot.2022.823435
|
3 |
MAJID R M, JONG H L EEG based emotion recognition from human brain using Hjorth parameters and SVM[J]. International Journal of Bio-Science and Bio-Technology, 2015, 7 (3): 23- 32
doi: 10.14257/ijbsbt.2015.7.3.03
|
4 |
LI T Y, FU B L, WU Z X, et al EEG-based emotion recognition using spatial-temporal-connective features via multi-scale CNN[J]. IEEE Access, 2023, 11: 41859- 41867
doi: 10.1109/ACCESS.2023.3270317
|
5 |
DU G L, SU J S, ZHANG L L, et al A multi-dimensional graph convolution network for EEG emotion recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1- 11
|
6 |
LI C, HUANG X Y, SONG R C, et al EEG-based seizure prediction via Transformer guided CNN[J]. Measurement, 2022, 203: 111948
doi: 10.1016/j.measurement.2022.111948
|
7 |
CHENG J, CHEN M Y, LI C, et al Emotion recognition from multi-channel EEG via deep forest[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25 (2): 453- 464
|
8 |
BANDARA D, VELIPASALAR S, BRATT S, et al Building predictive models of emotion with functional near-infrared spectroscopy[J]. International Journal of Human-Computer Studies, 2018, 110: 75- 85
doi: 10.1016/j.ijhcs.2017.10.001
|
9 |
HU X, ZHUANG C, WANG F, et al fNIRS evidence for recognizably different positive emotions[J]. Frontiers in Human Neuroscience, 2019, 13: 120
doi: 10.3389/fnhum.2019.00120
|
10 |
SUN Y, AYAZ H, AKANSU AN Multimodal affective state assessment using fNIRS+EEG and spontaneous facial expression[J]. Brain Sciences, 2020, 10 (2): 85- 104
doi: 10.3390/brainsci10020085
|
11 |
BECKER H, FLEUREAU J, GUILLOTEL P, et al Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources[J]. IEEE Transactions on Affective Computing, 2020, 11 (2): 244- 257
doi: 10.1109/TAFFC.2017.2768030
|
12 |
ZHE S, ZIHAO H, FENG D, et al A novel multimodal approach for hybrid brain–computer interface[J]. IEEE Access, 2020, 8: 89909- 89918
doi: 10.1109/ACCESS.2020.2994226
|
13 |
DELIGANI R J, BORGHEAI S B, MCLINDEN J, et al Multimodal fusion of EEG-fNIRS: a mutual information-based hybrid classification framework[J]. Biomedical Optics Express, 2021, 12 (3): 1635- 1650
|
14 |
KWAK Y C, SONG W J, KIM S E FGANet: fNIRS-guided attention network for hybrid EEG-fNIRS brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 329- 339
doi: 10.1109/TNSRE.2022.3149899
|
15 |
王颖, 高胜 轻量型胶囊网络语音情感识别方法[J]. 电子科技大学学报, 2023, 52 (3): 423- 429 WANG Ying, GAO Sheng A speech emotion recognition method based on lightweight capsule network[J]. Journal of University of Electronic Science and Technology of China, 2023, 52 (3): 423- 429
doi: 10.12178/1001-0548.2022086
|
16 |
杨巨成, 韩书杰, 毛磊, 等 胶囊网络模型综述[J]. 山东大学学报: 工学版, 2019, 49 (6): 1- 10 YANG Jucheng, HAN Shujie, MAO Lei, et al Review of capsule network[J]. Journal of Shandong University: Engineering Science, 2019, 49 (6): 1- 10
|
17 |
HINTON G E, OSINDERO S, TEH Y W A fast-learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18 (7): 1527- 1554
|
18 |
ZHANG Y, CHENG C, ZHANG Y Multimodal emotion recognition using a hierarchical fusion convolutional neural network[J]. IEEE Access, 2021, 9: 7943- 7951
doi: 10.1109/ACCESS.2021.3049516
|
19 |
谌鈫, 陈兰岚, 江润强 集成胶囊网络的脑电情绪识别[J]. 计算机工程与应用, 2022, 58 (8): 175- 184 CHEN Qin, CHEN Lanlan, JIANG Runqiang Emotion recognition of EEG based on ensemble CapsNet[J]. Computer Engineering and Applications, 2022, 58 (8): 175- 184
doi: 10.3778/j.issn.1002-8331.2010-0263
|
20 |
YU L, DING Y F, CHANG L, et al Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network[J]. Computers in Biology and Medicine, 2020, 123: 103927
doi: 10.1016/j.compbiomed.2020.103927
|
21 |
WANG Z H, CHEN C, LI J, et al ST-CapsNet: linking spatial and temporal attention with capsule network for P300 detection improvement[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 991- 1000
doi: 10.1109/TNSRE.2023.3237319
|
22 |
LI C, WANG B, ZHANG S L, et al Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism[J]. Computers in Biology and Medicine, 2022, 143: 105303
doi: 10.1016/j.compbiomed.2022.105303
|
23 |
张静, 张雪英, 陈桂军, 等 结合3D-CNN和频-空注意力机制的EEG情感识别[J]. 西安电子科技大学学报, 2022, 49 (3): 191- 198 ZHANG Jing, ZHANG Xueying, CHEN Guijun, et al EEG emotion recognition based on the 3D-CNN and spatial-frequency attention mechanism[J]. Journal of Xidian University, 2022, 49 (3): 191- 198
|
24 |
GUIDO N, EDGAR L G, ZHENG L, et al Mathematical relations between measures of brain connectivity estimated from electrophysiological recordings for gaussian distributed data[J]. Frontiers in Neuroscience, 2020, 14: 577574
doi: 10.3389/fnins.2020.577574
|
25 |
HAO M G, XING T X, JIANG J L, et al Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8 (3): 331- 368
doi: 10.1007/s41095-022-0271-y
|
26 |
崔浩阳, 丁偕, 张敬谊 基于细胞图卷积的组织病理图像分类研究[J]. 计算机工程与应用, 2020, 56 (24): 223- 228 CUI Haoyang, DING Xie, ZHANG Jingyi Research on classification of histopathological image based on cell graph convolutional network[J]. Computer Engineering and Applications, 2020, 56 (24): 223- 228
doi: 10.3778/j.issn.1002-8331.2009-0364
|
27 |
GUANG B, KAI Y, LI T, et al Linking multi-layer dynamical GCN with style-based recalibration CNN for EEG-based emotion recognition[J]. Frontiers in Neurorobotics, 2022, 16: 834952
doi: 10.3389/fnbot.2022.834952
|
28 |
HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs [J]. Advances in Neural Information Processing Systems, 2017(12): 1024-1034.
|
29 |
LI Y, ZHENG W, WANG L, et al From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition[J]. IEEE Transactions on Affective Computing, 2019, 13 (2): 568- 578
|
30 |
MOON S E, JANG S B, LEE J S. Convolutional neural network approach for EEG-based emotion recognition using brain connectivity and its spatial information [C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary: IEEE, 2018: 2556–2560.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|