自动化技术 |
|
|
|
|
基于多尺度互注意力的遥感图像语义分割网络 |
刘春娟1(),乔泽1,闫浩文2,3,吴小所1,3,*(),王嘉伟1,辛钰强1 |
1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 2. 兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070 3. 甘肃大禹九洲空间信息科技有限公司院士专家工作站,甘肃 兰州 730070 |
|
Semantic segmentation network for remote sensing image based on multi-scale mutual attention |
Chun-juan LIU1(),Ze QIAO1,Hao-wen YAN2,3,Xiao-suo WU1,3,*(),Jia-wei WANG1,Yu-qiang XIN1 |
1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. School of Surveying, Mapping and Geographic Information, Lanzhou Jiaotong University, Lanzhou 730070, China 3. Academician Expert Workstation of Gansu Dayu Jiuzhou Space Information Technology Limited Company, Lanzhou 730070, China |
引用本文:
刘春娟,乔泽,闫浩文,吴小所,王嘉伟,辛钰强. 基于多尺度互注意力的遥感图像语义分割网络[J]. 浙江大学学报(工学版), 2023, 57(7): 1335-1344.
Chun-juan LIU,Ze QIAO,Hao-wen YAN,Xiao-suo WU,Jia-wei WANG,Yu-qiang XIN. Semantic segmentation network for remote sensing image based on multi-scale mutual attention. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1335-1344.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.008
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1335
|
1 |
ZHANG X, XIAO Z, LI D, et al Semantic segmentation of remote sensing images using multiscale decoding network[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (9): 1492- 1496
doi: 10.1109/LGRS.2019.2901592
|
2 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
|
3 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
4 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. [2017-06-17]. https://arxiv.org/ abs/1706.05587.
|
5 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2881-2890.
|
6 |
WANG X, LI Z, HUANG Y, et al Multimodal medical image segmentation using multi-scale context-aware network[J]. Neurocomputing, 2022, 486: 135- 146
doi: 10.1016/j.neucom.2021.11.017
|
7 |
DOU F, ZHANG C, HU D, et al EASNet: a multiscale attention semantic segmentation network combined with asymmetric convolution[J]. Journal of Electronic Imaging, 2022, 31 (4): 043034
|
8 |
LUO J, ZHAO L, ZHU L, et al Multi-scale receptive field fusion network for lightweight image super-resolution[J]. Neurocomputing, 2022, 493: 314- 326
doi: 10.1016/j.neucom.2022.04.038
|
9 |
LIN D, SHEN D, SHEN S, et al. Zigzagnet: fusing top-down and bottom-up context for object segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7490-7499.
|
10 |
吴泽康, 赵姗, 李宏伟, 等 遥感图像语义分割空间全局上下文信息网络[J]. 浙江大学学报: 工学版, 2022, 56 (4): 795- 802 WU Ze-kang, ZHAO Shan, LI Hong-wei, et al Spatial global context information network for semantic segmentation of remote sensing image[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 795- 802
|
11 |
FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3146-3154.
|
12 |
HUANG Z, WANG X, HUANG L, et al. CCNet: criss-cross attention for semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 603-612.
|
13 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
|
14 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision. Munich: [s. n. ], 2018: 3–19.
|
15 |
ZHOU Z, ZHOU Y, WANG D, et al Self-attention feature fusion network for semantic segmentation[J]. Neurocomputing, 2021, 453: 50- 59
doi: 10.1016/j.neucom.2021.04.106
|
16 |
谭大宁, 刘瑜, 姚力波, 等 基于视觉注意力机制的多源遥感图像语义分割[J]. 信号处理, 2022, 38 (6): 1180- 1191 TAN Da-ning, LIU Yu, YAO Li-bo, et al Semantic segmentation of multi-source remote sensing images based on visual attention mechanism[J]. Journal of Signal Processing, 2022, 38 (6): 1180- 1191
|
17 |
ZOU L, ZHANG Z, DU H, et al DA-IMRN: dual-attention-guided interactive multi-scale residual network for hyperspectral image classification[J]. Remote Sensing, 2022, 14 (3): 530
doi: 10.3390/rs14030530
|
18 |
CUI W, WANG F, HE X, et al Multi-scale semantic segmentation and spatial relationship recognition of remote sensing images based on an attention model[J]. Remote Sensing, 2019, 11 (9): 1044
doi: 10.3390/rs11091044
|
19 |
QI X, LI K, LIU P, et al Deep attention and multi-scale networks for accurate remote sensing image segmentation[J]. IEEE Access, 2020, 8: 146627- 146639
doi: 10.1109/ACCESS.2020.3015587
|
20 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2014-09-04]. https://arxiv.org/abs/1409.1556.
|
21 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495
doi: 10.1109/TPAMI.2016.2644615
|
22 |
SRIVASTAVA A, JHA D, CHANDA S, et al Msrf-net: a multi-scale residual fusion network for biomedical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26 (5): 2252- 2263
|
23 |
LI X, ZHONG Z, WU J, et al. Expectation-maximization attention networks for semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9167-9176.
|
24 |
WU X, WU Z, GUO H, et al. DANNet: a one-stage domain adaptation network for unsupervised nighttime semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S. l. ]: IEEE, 2021: 15769-15778.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|