Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 170-177    DOI: 10.3785/j.issn.1008-973X.2023.01.017
计算机技术、通信工程     
基于运动预测的改进ORB-SLAM算法
蒋林(),刘林锐,周安娜,韩璐,李平原
西南石油大学 电气信息学院,四川 成都 610500
Improved ORB-SLAM algorithm based on motion prediction
Lin JIANG(),Lin-rui LIU,An-na ZHOU,Lu HAN,Ping-yuan LI
College of Electrical Information, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(1137 KB)   HTML
摘要:

针对不同运动场景下以固定的点特征提取与匹配策略的ORB-SLAM算法存在系统跟踪定位误差较大的问题,考虑相机自身运动对视觉SLAM系统的影响,提出基于运动预测的改进ORB-SLAM算法. 该方法利用上一帧的点特征利用率和匀速运动模型,预测出相邻2帧之间的共视范围,实时动态调整不同运动状态下的点特征提取阈值,在保证系统稳定性的情况下,提高系统的准确性. 提出基于运动预测的点特征匹配优化策略,基于匀速运动模型快速确定出共视范围内的有效待匹配点,结合图像金字塔缩小匹配搜索范围,减少大量的无效匹配过程. 在TUM数据集上进行对比实验,结果表明,提出的算法不仅实时性好,而且提高了系统的精度.

关键词: 改进ORB-SLAM算法运动预测共视范围点特征提取与匹配跟踪定位    
Abstract:

An improved ORB-SLAM algorithm based on motion prediction was proposed by considering the influence of the camera’s own motion on the visual SLAM system aiming at the problem that the ORB-SLAM algorithm with fixed point feature extraction and matching strategy has large tracking and positioning error in different motion scenes. The point feature utilization rate of the previous frame and the uniform motion model were used to predict the mutually visual zone between two adjacent frames. The threshold of point feature extraction under different motion states was dynamically adjusted in real time. Then the accuracy of the system was improved while ensuring the stability of the system. A point feature matching optimization strategy based on motion prediction was proposed. The effective matching points within the mutually visual zone were quickly determined based on the uniform motion model. The matching search range was narrowed by combining the image pyramid in order to reduce many invalid matching processes. The comparison experiments were conducted on the TUM data set. Results show that the proposed algorithm not only has good real-time performance, but also improves the accuracy of the system.

Key words: improved ORB-SLAM algorithm    motion prediction    mutually visual zone    point feature extraction and matching    tracking and positioning
收稿日期: 2022-05-09 出版日期: 2023-01-17
CLC:  TP 242  
基金资助: 国家自然科学基金青年基金资助项目 (51702266);成都市科技资助项目(2022-YF05-00157-SN)
作者简介: 蒋林(1974—),男,副教授,从事智能控制、电机控制和新能源发电与并网研究. orcid.org/0000-0002-0650-2568. E-mail: jlin57@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
蒋林
刘林锐
周安娜
韩璐
李平原

引用本文:

蒋林,刘林锐,周安娜,韩璐,李平原. 基于运动预测的改进ORB-SLAM算法[J]. 浙江大学学报(工学版), 2023, 57(1): 170-177.

Lin JIANG,Lin-rui LIU,An-na ZHOU,Lu HAN,Ping-yuan LI. Improved ORB-SLAM algorithm based on motion prediction. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 170-177.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.017        https://www.zjujournals.com/eng/CN/Y2023/V57/I1/170

图 1  不同位姿变化下图像的共视范围示意图
图 2  无序点排序的原理图
图 3  图像金字塔在点特征匹配中的应用
数据序列 Dn/s Tr/m vd/(m·s?1) ωa/((°)·s?1) 帧数 kp kd Re sset
fr1/xyz 30.09 7.112 0.244 8.920 798 2.75 1.12 0.45 0.96
fr1/rpy 27.67 1.664 0.062 50.147 723 2.80 1.14 0.45 0.90
fr1/desk 23.40 9.263 0.413 23.327 613 2.80 1.15 0.45 0.81
fr1/room 48.90 15.989 0.334 13.425 1362 2.35 1.02 0.45 0.92
fr1/desk2 24.86 10.161 0.426 29.882 640 2.75 1.13 0.45 0.85
fr1/floor 49.87 12.569 0.258 15.071 1242 2.75 1.12 0.45 0.78
表 1  实验数据序列及主要参数设置
数据序列 ATE1/m ATE2/m η/%
RMSE Mean Median Std RMSE Mean Median Std RMSE Mean Median Std
fr1/xyz 0.010345 0.008583 0.007183 0.005775 0.009001 0.007539 0.006632 0.004917 13.12 12.16 7.67 14.80
fr1/desk 0.020537 0.014287 0.010356 0.014754 0.014302 0.011750 0.009703 0.008155 30.35 17.75 6.30 44.72
fr1/floor 0.019249 0.014258 0.011476 0.012933 0.012215 0.010794 0.010750 0.005720 36.54 24.29 6.32 55.77
fr1/desk2 0.030504 0.023948 0.018388 0.018893 0.021122 0.018105 0.016830 0.010880 30.75 24.39 8.47 42.41
fr1/rpy 0.029052 0.021588 0.016343 0.019442 0.019263 0.015731 0.012500 0.011117 33.69 27.13 13.51 42.81
fr1/room 0.081456 0.076147 0.074225 0.028925 0.036980 0.031801 0.028675 0.018874 54.60 58.23 60.36 34.74
表 2  绝对轨迹误差的对比结果
数据序列 RPE1/m RPE2/m η/%
RMSE Mean Median Std RMSE Mean Median Std RMSE Mean Median Std
fr1/xyz 0.005922 0.004971 0.004163 0.003219 0.005761 0.004795 0.004056 0.003194 2.71 3.54 2.57 0.77
fr1/desk 0.011885 0.008027 0.005570 0.008765 0.008962 0.007158 0.005742 0.005392 24.59 10.82 ?3.08 38.4
fr1/floor 0.004036 0.003215 0.002749 0.002441 0.003847 0.003132 0.002694 0.002233 4.68 2.58 2.00 8.51
fr1/desk2 0.010667 0.008624 0.007375 0.006278 0.010499 0.008516 0.006999 0.006140 1.57 1.25 5.22 2.19
fr1/rpy 0.010811 0.007523 0.005508 0.007764 0.009191 0.007171 0.005645 0.005750 14.99 4.67 ?2.40 25.94
fr1/room 0.014180 0.008613 0.006216 0.011264 0.011528 0.008074 0.005892 0.008229 18.70 6.25 5.21 26.94
表 3  相对位姿误差的对比结果
图 4  在fr1/room数据集下2种算法运行的ATE结果图
数据序列 t1/ms t2/ms
Mean Median Mean Median
fr1/xyz 26.3672 26.4735 25.2066 25.4335
fr1/desk 24.7731 25.4751 27.8914 26.8529
fr1/floor 21.2646 20.9751 20.4787 19.5910
fr1/desk2 31.1467 30.5623 29.4175 28.6211
fr1/rpy 26.8241 26.6784 24.0751 24.2393
fr1/room 25.4631 22.5552 24.2438 21.6065
表 4  每帧处理时间的对比情况
1 施俊屹, 查富生, 孙立宁, 等 移动机器人视觉惯性SLAM研究进展[J]. 机器人, 2020, 42 (6): 734- 748
SHI Jun-yi, ZHA Fu-sheng, SUN Li-ning, et al Progress in visual inertial SLAM for mobile robots[J]. Robot, 2020, 42 (6): 734- 748
doi: 10.13973/j.cnki.robot.190685
2 BELTER D, NOWICKI M R Optimization-based legged odometry and sensor fusion for legged robot continuous localization[J]. Robotics and Autonomous Systems, 2019, 111: 110- 124
doi: 10.1016/j.robot.2018.10.013
3 邸凯昌, 万文辉, 赵红颖, 等 视觉SLAM技术的进展与应用[J]. 测绘学报, 2018, 47 (6): 770- 779
DI Kai-chang, WAN Wen-hui, ZHAO Hong-ying, et al Progress and application of visual SLAM[J]. Journal of Surveying and Mapping, 2018, 47 (6): 770- 779
doi: 10.11947/j.AGCS.2018.20170652
4 MUR-ARTAL R, TARDOS J D ORB-SLAM2: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2017, 31 (5): 1255- 1265
5 李国竣, 徐延海, 段杰文, 等 利用局部自适应阈值方法提取ORB-SLAM特征点[J]. 测绘通报, 2021, (9): 32- 36
LI Guo-jun, XU Yan-hai, DUAN Jie-wen, et al Feature points extraction for ORB-SLAM using local adaptive threshold method[J]. Bulletin of Surveying and Mapping, 2021, (9): 32- 36
doi: 10.13474/j.cnki.11-2246.2021.0269
6 LI Shi-ji, WANG Qing, LI Jia-yue Improved ORB matching algorithm based on adaptive threshold[J]. Journal of Physics: Conference Series, 2021, 1871 (1): 12- 14
7 胡山山, 陈熙源, 卢飞平 基于改进ORB特征点的LK光流算法[J]. 传感技术学报, 2021, 34 (1): 21- 26
HU Shan-shan, CHEN Xi-yuan, LU Fei-ping A LK optical flow algorithm based on improved ORB feature points[J]. Chinese Journal of Sensors and Sensors, 2021, 34 (1): 21- 26
doi: 10.3969/j.issn.1004-1699.2021.01.004
8 张一, 姜挺, 江刚武, 等 适用于高精度同时定位与地图构建的均衡化亚像素ORB特征提取方法[J]. 光学精密工程, 2018, 26 (10): 2575- 2583
ZHANG Yi, JIANG Ting, JIANG Gang-wu, et al An equalization subpixel ORB feature extraction method for high precision simultaneous localization and map construction[J]. Optics and Precision Engineering, 2018, 26 (10): 2575- 2583
doi: 10.3788/OPE.20182610.2575
9 GAN Yu, ZHANG Jian-hua, CHEN Kai-qi, et al A dynamic detection method to improve SLAM performance[J]. Optoelectronics Letters, 2021, 17 (11): 693- 698
doi: 10.1007/s11801-021-1022-5
10 AI Yong-bao, TING Rui, YANG Xiao-qiang, et al Visual SLAM in dynamic environments based on object detection[J]. Defence Technology, 2021, 17 (5): 1712- 1721
doi: 10.1016/j.dt.2020.09.012
11 曹力科, 肖晓晖 基于卷帘快门RGB-D相机的视觉惯性SLAM方法[J]. 机器人, 2021, 43 (2): 193- 202
CAO Li-ke, XIAO Xiao-hui A visual-inertial SLAM method based on rolling shutter RGB-D cameras[J]. Robot, 2021, 43 (2): 193- 202
doi: 10.13973/j.cnki.robot.200245
12 刘贵涛, 张雷, 徐方 面向局部弱纹理环境的多双目视觉SLAM[J]. 组合机床与自动化加工技术, 2022, (3): 116- 119
LIU Gui-tao, ZHANG Lei, XU Fang Multi stereo vision SLAM for local weak texture environment[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2022, (3): 116- 119
doi: 10.13462/j.cnki.mmtamt.2022.03.028
13 YANG Yu, XIONG Jing, XU She, et al Passive initialization method based on motion characteristics for monocular SLAM[J]. Complexity, 2019, (3): 8176489-1- 11
14 SONG T, CHEN B, ZHAO F M, et al Research on image feature matching algorithm based on feature optical flow and corner feature[J]. The Journal of Engineering, 2020, 13: 529- 534
15 MA Wei-Ping, WEN Xin-li, CAO Peng-xia Binocular vision object positioning method for robots based on coarse-fine stereo matching[J]. International Journal of Automation and Computing, 2020, 17 (4): 562- 571
doi: 10.1007/s11633-020-1226-3
16 PINKOVICH B, RIVLIN E, ROTSTEIN H Predictive driving in an unstructured scenario using the bundle adjustment algorithm[J]. IEEE Transactions on Control Systems Technology, 2021, 29 (1): 342- 352
doi: 10.1109/TCST.2020.2977306
17 ZHU Y, GAO R, HUANG S, et al. Learning neural representation of camera pose with matrix representation of pose shift via view synthesis [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 9954- 9963.
18 BARFOOT T D, FURGAL P T Associating uncertainty with three-dimensional poses for use in estimation problems[J]. IEEE Transactions on Robotics, 2017, 30 (3): 679- 693
19 KOIDE K, MENEGATTI E General hand–eye calibration based on reprojection error minimization[J]. IEEE Robotics and Automation Letters, 2019, 4 (2): 1021- 1028
doi: 10.1109/LRA.2019.2893612
20 CHOWDHURY F M, TALUKDER K H The unidirectional edge method: a new approach for solving point enclosure problem for arbitrary polygon[J]. Asian Journal of Information Technology, 2012, 4 (5): 537- 540
21 SHAH D, ZAVERI T, TRIVEDI Y N Convex polygon maximization-based hyperspectral endmember extraction algorithm[J]. Journal of the Indian Society of Remote Sensing, 2020, 49 (2): 419- 432
22 MA C, HU X, FU L, et al. An improved ORB algorithm based on multi-feature fusion [C]// IEEE 27th International Symposium on Industrial Electronics. Cairns: IEEE, 2018: 729-734.
[1] 陶治同,陶建峰,覃程锦,刘成良. 基于时间冲击最优的TBM换刀机器人轨迹规划[J]. 浙江大学学报(工学版), 2023, 57(1): 1-9.
[2] 赵业和,刘达新,刘振宇,谭建荣. 基于多种群竞争松鼠搜索算法的机械臂时间最优轨迹规划[J]. 浙江大学学报(工学版), 2022, 56(12): 2321-2329.
[3] 叶梦佳,王宇轩,王赟,赖周年,曹琳琳,吴大转. AUV平面直线航迹跟踪控制算法[J]. 浙江大学学报(工学版), 2022, 56(11): 2127-2134.
[4] 张世玉,陈东生,宋颖慧. 基于自抗干扰的装配机器人阻抗控制技术[J]. 浙江大学学报(工学版), 2022, 56(9): 1876-1881.
[5] 许明,张帝,戎铖,苏礼荣,王万强. 基于Bouc-Wen修正模型的柔性关节驱动器迟滞建模[J]. 浙江大学学报(工学版), 2022, 56(8): 1560-1567, 1621.
[6] 华夏,王新晴,芮挺,邵发明,王东. 视觉感知的无人机端到端目标跟踪控制技术[J]. 浙江大学学报(工学版), 2022, 56(7): 1464-1472.
[7] 郭策,曾志文,朱鹏铭,周智千,卢惠民. 基于图卷积模仿学习的分布式群集控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1055-1061.
[8] 林凯,梁新武,蔡纪源. 基于重投影深度差累积图与静态概率的动态RGB-D SLAM算法[J]. 浙江大学学报(工学版), 2022, 56(6): 1062-1070.
[9] 陈宏鑫,张北,王春香,杨明. 基于自适应随动机构的机器人目标跟随[J]. 浙江大学学报(工学版), 2022, 56(6): 1071-1078.
[10] 李坤,李继华,李磊,卓越,潘博,付宜利. 四自由度微创手术器械的机构综合及运动学分析[J]. 浙江大学学报(工学版), 2022, 56(6): 1119-1126.
[11] 王思鹏,杜昌平,宋广华,郑耀. 基于改进MSCKF的无人机室内定位方法[J]. 浙江大学学报(工学版), 2022, 56(4): 711-717.
[12] 支乐威,陈教料,王佳才,胥芳,张立彬. 基于参数优化的机器人花键装配偏角感知识别方法[J]. 浙江大学学报(工学版), 2022, 56(3): 452-461.
[13] 李琳,薛泽浩,蔡蒂,张铁. 管道内壁四足爬壁机器人的运动学与步态规划[J]. 浙江大学学报(工学版), 2021, 55(12): 2286-2297.
[14] 吴敬理,伊国栋,裘乐淼,张树有. 高温混合障碍空间中的移动机器人路径规划[J]. 浙江大学学报(工学版), 2021, 55(10): 1806-1814.
[15] 蔺志伟,李奇敏,汪显宇. 基于改进Census变换的单目视觉里程计[J]. 浙江大学学报(工学版), 2021, 55(8): 1500-1509.