Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 21-31    DOI: 10.3785/j.issn.1008-973X.2023.01.003
机械与能源工程     
面向电弧增材的单线激光扫描路径规划
靳佳澳1,2(),沈洪垚1,2,*(),孙扬帆1,2,林嘉浩1,2,陈静霓1,2
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 浙江大学 浙江省三维打印工艺与装备重点实验室,浙江 杭州 310027
Single-line laser scanning path planning for wire arc and additive manufacturing
Jia-ao JIN1,2(),Hong-yao SHEN1,2,*(),Yang-fan SUN1,2,Jia-hao LIN1,2,Jing-ni CHEN1,2
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2021 KB)   HTML
摘要:

为了在电弧增材制造(WAAM)过程中获取零件的形貌尺寸信息,以CAD模型作为输入,通过实验分析单线激光扫描仪的工作约束条件,实现基于单线激光的零件外形扫描路径生成算法,开展仿真与实验验证. 通过多组实验获取合适的扫描距离和扫描角度作为路径规划约束,针对输入模型迭代使用最大连通区域求解算法、求解最小投影矩形、等重叠路径规划等多种方法生成单次扫描路径. 对单条路径优化,使用最近点搜索和碰撞检测算法,串联生成机器人末端运动轨迹,借助仿真对轨迹进行修正. 实验结果证明,该路径规划方法对电弧增材零件能够达到较好的测量精度、效率及覆盖率. 测量结果可以为后续增减材复合制造过程提供丰富的轮廓信息.

关键词: 电弧增材制造单线激光测量扫描约束路径规划误差分析    
Abstract:

The CAD model was used as input in order to obtain the shape and size information of the part in wire arc and additive manufacturing (WAAM). The working constraints of the single-line laser scanner were analyzed through experiments. The algorithm of scanning path generation for single-line laser automatic measurement was realized, and the effectiveness of the method was verified by simulation and experiment. The appropriate scanning distance and scanning angle were obtained as the path planning constraints through multiple experiments. The single scan path for the input model was iteratively generated by using methods such as maximum connected region solving algorithm, minimum projection rectangle solving, equal overlapping path planning, etc. The nearest point search and collision detection algorithm were used for a single path optimization in order to generate the trajectory of robot end in series. The trajectory was corrected by simulation. The experimental results show that the path planning method can achieve great measurement accuracy, efficiency and coverage for WAAM part. The measurement results can provide rich profile information for the subsequent additive and subtractive hybrid manufacturing process.

Key words: wire arc and additive manufacturing    single-line laser measurement    scanning constraint    path planning    error analysis
收稿日期: 2022-03-01 出版日期: 2023-01-17
CLC:  TH 741  
基金资助: 国家自然科学基金资助项目(51975518,51821093);国家青年科学基金资助项目(52005438);浙江省杰出青年科学基金资助项目(LR22E050002);宁波市科技计划资助项目(2020Z012);浙江省重点研发计划资助项目(2021C01096)
通讯作者: 沈洪垚     E-mail: jinjiaaoux@foxmail.com;shenhongyao@zju.edu.cn
作者简介: 靳佳澳(1997—),男,硕士生,从事增减材复合制造的研究. orcid.org/0000-0002-8155-4229. E-mail: jinjiaaoux@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
靳佳澳
沈洪垚
孙扬帆
林嘉浩
陈静霓

引用本文:

靳佳澳,沈洪垚,孙扬帆,林嘉浩,陈静霓. 面向电弧增材的单线激光扫描路径规划[J]. 浙江大学学报(工学版), 2023, 57(1): 21-31.

Jia-ao JIN,Hong-yao SHEN,Yang-fan SUN,Jia-hao LIN,Jing-ni CHEN. Single-line laser scanning path planning for wire arc and additive manufacturing. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 21-31.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.003        https://www.zjujournals.com/eng/CN/Y2023/V57/I1/21

图 1  WAAM零件的外形示意图
图 2  单线激光扫描仪的约束条件
图 3  扫描约束的实验
图 4  平面拟合距离均方根与h和β的关系
图 5  扫描点数量与h、β的关系
图 6  扫描路径规划的流程图
图 7  薄壁转换体零件模型
图 8  最大连通区域的示意图
图 9  满足约束面片计算的示意图
图 10  连通区域扫描路径的生成
图 11  全覆盖时的三维扫描路径
图 12  去除空扫后的路径
图 13  有效扫描优化后的三维扫描路径
图 14  碰撞检测的示意图
图 15  转换体模型的三维路径规划结果
图 16  其他类型模型的三维路径规划结果
图 17  机器人扫描仿真系统
图 18  测量系统的坐标变换
图 19  机器人末端的仿真运动路径
图 20  扫描实验的过程
图 21  转换体的扫描点云
图 22  转换体零件的误差云图
1 SINGH S, SHARMA K S, RATHOD W D A review on process planning strategies and challenges of WAAM[J]. Materials Today: Proceedings, 2021, 47 (19): 6564- 6575
2 SINGH R S, KHANNA P Wire arc additive manufacturing (WAAM): a new process to shape engineering materials[J]. Materials Today: Proceedings, 2021, 44 (1): 118- 128
3 WU Bin-tao, PAN Zeng-xi, DING Dong-hong, et al A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement[J]. Journal of Manufacturing Processes, 2018, 35 (1): 127- 139
4 李友浩. 基于线结构光的电弧增材制造熔积层形貌三维测量[D]. 武汉: 华中科技大学, 2016.
LI You-hao. Deposition layer’s 3d measurement of arc-based additive manufacturing based on line-structured light [D]. Wuhan: Huazhong University of Science and Technology, 2016.
5 DING Dong-hong, PAN Zeng-xi, CUIURI D, et al Wire-feed additive manufacturing of metal components: technologies, developments and future interests[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81 (1): 465- 481
6 SINGH P, DUTTA D. Multi-direction layered deposition: an overview of process planning methodologies [EB/OL]. [2003-01-01]. http://dx.doi.org/10.26153/tsw/5563.
7 LIU Bing, SHEN Hong-yao, DENG Rong-xin, et al Research on a planning method for switching moments in hybrid manufacturing processes[J]. Journal of Manufacturing Processes, 2020, 56 (A): 786- 795
8 RAUT L P, TAIWADE R V Wire arc additive manufacturing: a comprehensive review and research directions[J]. Journal of Materials Engineering and Performance, 2021, 30 (1): 4768- 4791
9 杜军, 马琛, 魏正英 基于视觉传感的铝合金电弧增材沉积层形貌动态响应[J]. 浙江大学学报: 工学版, 2020, 54 (8): 1481- 1489
DU Jun, MA Chen, WEI Zheng-ying Dynamic response of surface morphology of aluminum (Al) deposited layers in wire and arc additive manufacturing based on visual sensing[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1481- 1489
10 BAI X W, ZHANG H O, WANG G L Improving prediction accuracy of thermal analysis for weld-based additive manufacturing by calibrating input parameters using IR imaging[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69 (1): 1087- 1095
11 KARUNAKARAN P K, SURYAKUMAR S, PUSHPA V, et al Low cost integration of additive and subtractive processes for hybrid layered manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26 (5): 490- 499
doi: 10.1016/j.rcim.2010.03.008
12 SHEN Hong-yao, JIN Jia-ao, LIU Bing, et al Measurement and evaluation of laser-scanned 3D profiles in wire arc hybrid manufacturing processes[J]. Measurement, 2021, 176: 109089
doi: 10.1016/j.measurement.2021.109089
13 DING Li-jun, DAI Shu-guang, MU Ping-an. CAD-based path planning for 3d laser scanning of complex surface [C]// 2nd International Conference on Intelligent Computing, Communication and Convergence. Odisha: Elsevier, 2016: 526–535.
14 LARSSON S, KJELLANDER A P J Path planning for laser scanning with an industrial robot[J]. Robotics and Autonomous Systems, 2008, 56: 615- 624
doi: 10.1016/j.robot.2007.10.006
15 PHAN D M N, QUINSAT Y, LAVERNHE S, et al Path planning of a laser-scanner with the control of overlap for 3d part inspection[J]. Procedia CIRP, 2018, 67: 392- 397
doi: 10.1016/j.procir.2017.12.231
16 LARTIGUE C, QUINSAT Y, CHARYAR M S, et al Voxel-based path planning for 3d scanning of mechanical parts[J]. Computer-Aided Design and Applications, 2014, 11 (2): 220- 227
doi: 10.1080/16864360.2014.846096
17 艾小祥, 俞慈君, 方强, 等 基于遗传算法的机翼壁板扫描路径优化[J]. 浙江大学学报: 工学版, 2015, 49 (3): 448- 456
AI Xiao-xiang, YU Ci-jun, FANG Qiang, et al Optimized scanning path of wing panel based on genetic algorithm[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (3): 448- 456
18 YANG Yi-peng, LI Zhao-ting, YU Xing-hu, et al A trajectory planning method for robot scanning system using mask R-CNN for scanning objects with unknown model[J]. Neurocomputing, 2020, 404: 329- 339
doi: 10.1016/j.neucom.2020.04.059
19 刘阳. 基于激光感知的喷涂机器人智能编程算法研究与软件开发[D]. 南京: 东南大学, 2018.
LIU Yang. Research on intelligent programming algorithm and software development of painting robot based on laser sensing [D]. Nanjing: Southeast University, 2018.
20 王鹏. 线结构光三维自动扫描系统关键技术的研究[D]. 天津: 天津大学, 2008.
WANG Peng. Study on key techniques for automatic 3d structured-light scanning system [D]. Tianjin: Tianjin University, 2008.
21 张晓蕾. 基于动态路径规划的三维扫描方法研究[D]. 大连: 大连理工大学, 2017.
ZHANG Xiao-lei. The research of 3d scanning method based on dynamic path planning [D]. Dalian: Dalian University of Technology, 2017.
22 王朝. 结合机器视觉路径规划的激光三角法零件精密测量系统研究[D]. 武汉: 华中科技大学, 2019.
WANG Chao. Research of high precision measurement system for laser triangulation method combined with machine vision path planning [D]. Wuhan: Huazhong University of Science and Technology, 2019.
23 MAHMUDA M, JOANNICB D, ROY M, et al 3D part inspection path planning of a laser scanner with control on the uncertainty[J]. Computer-Aided Design, 2011, 43 (4): 345- 355
doi: 10.1016/j.cad.2010.12.014
24 DONG Zhi-xu, SUN Xing-wei, LIU Wei-jun, et al Measurement of free-form curved surfaces using laser triangulation[J]. Sensors, 2018, 18 (10): 3527
doi: 10.3390/s18103527
25 SON S, LEE K H. Automated scan plan generation using STL meshes for 3D stripe-type laser scanner [C]// Computational Science and Its Applications. Germany: Springer, 2003: 424–435.
[1] 徐维祥,康楠,徐婷. 基于出行计划数据的最优路径规划方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1542-1552.
[2] 戴天伦,李博涵,臧亚磊,戴华,于自强,陈钢. PORP:面向无人驾驶的路径规划并行优化策略[J]. 浙江大学学报(工学版), 2022, 56(2): 329-337.
[3] 邓华健,王昊,王本冬,金仲和. 四象限模拟太阳敏感器的高精度补偿标定方法[J]. 浙江大学学报(工学版), 2021, 55(10): 1993-2001.
[4] 吴敬理,伊国栋,裘乐淼,张树有. 高温混合障碍空间中的移动机器人路径规划[J]. 浙江大学学报(工学版), 2021, 55(10): 1806-1814.
[5] 董大钊,徐冠华,高继良,徐月同,傅建中. 基于机器视觉的机器人装配位姿在线校正算法[J]. 浙江大学学报(工学版), 2021, 55(1): 145-152.
[6] 刘洁,董献洲,韩维,王昕炜,刘纯,贾珺. 采用牛顿迭代保辛伪谱算法的舰载机甲板路径规划[J]. 浙江大学学报(工学版), 2020, 54(9): 1827-1838.
[7] 杜军,马琛,魏正英. 基于视觉传感的铝合金电弧增材沉积层形貌动态响应[J]. 浙江大学学报(工学版), 2020, 54(8): 1481-1489.
[8] 刘军,冯硕,任建华. 移动机器人路径动态规划有向D*算法[J]. 浙江大学学报(工学版), 2020, 54(2): 291-300.
[9] 黄梓亮, 欧阳小平, 赵天菲, 张建波, 周亮, 杨华勇. 飞机液压含气量检测系统特性[J]. 浙江大学学报(工学版), 2019, 53(1): 158-165.
[10] 陈星宇, 黄善和, 何昊哲. 探测频率对多频声学测沙技术测量误差的影响[J]. 浙江大学学报(工学版), 2018, 52(2): 307-316.
[11] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[12] 艾小祥,俞慈君,方强,陈磊,方伟,沈立恒. 基于遗传算法的机翼壁板扫描路径优化[J]. 浙江大学学报(工学版), 2015, 49(3): 448-456.
[13] 马丽莎, 周文晖, 龚小谨, 刘济林. 基于运动约束的泛化Field D*路径规划[J]. J4, 2012, 46(8): 1546-1552.
[14] 骆永洁, 杨甬英, 田超, 韦涛, 卓永模. 非球面部分补偿检测系统的误差分析与处理[J]. J4, 2012, 46(4): 636-642.
[15] 林远芳, 黄强盛, 茹启田, 孙硕, 郑晓东. 椭偏参数测量误差对薄膜参数测试精度的影响[J]. J4, 2011, 45(8): 1485-1489.