Please wait a minute...
浙江大学学报(工学版)
计算机技术﹑电信技术     
基于遗传算法的机翼壁板扫描路径优化
艾小祥1,俞慈君1,方强1,陈磊2,方伟2,沈立恒2
1.浙江大学 机械工程学系,浙江 杭州 310027;2.中国商飞上海飞机制造有限公司,上海 200436
Optimized scanning path of wing panel based on genetic algorithm
AI Xiao-xiang1, YU Ci-jun1, FANG Qiang1, CHEN Lei2, FANG Wei2, SHEN Li-heng2
1.Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; 2. China COMAC Shanghai Aircraft Manufacturing Company Limited, Shanghai 200436, China
 全文: PDF(2391 KB)   HTML
摘要:

针对飞机机翼壁板数字化装配过程中蒙皮外形快速扫描的需求,对蒙皮的扫描路径进行自动规划.介绍激光扫描仪扫描测量的原理及方法,并分析扫描仪扫描样点时的倾角、距离及扫描宽度等约束条件.以大尺寸件机翼蒙皮为研究对象,对其进行数字化离散操作,得到一系列样点.使用最小二乘法对上述样点进行自动分组.在此基础上把扫描过程分为扫描测量和姿态调整2种动作交替运动的组合,构建以扫描过程总时间为最小的优化目标函数.利用遗传算法求解目标函数,从而优化三维空间的扫描路径,并将此路径与常见的梯形扫描和直线扫描路径进行比较,扫描总路径短且所用总姿态数少,平均扫描效率提高14.4%.最后,采用DELMIA软件平台进行扫描过程仿真,利用搭载扫描仪的机器人沿优化路径进行扫描.结果显示:本研究可满足扫描约束要求,且扫描仿真时间与计算时间一致.

Abstract:

Scanning path for wing skin was planned automatically in advance in order to complete the scanning of wing skin quickly in the process of wing panel digital assembly. Wing skin was represented by a series of sampled points. These sampled points were divided into groups automatically based on least square method after explaining the theory of laser scanner and analyzing the scanning constraints such as scanning angle, depth and width. The scanning process was divided into two actions of alternating motion combination for scanning measurement and attitude adjustment. The objective function about how to make the scanning process as short as possible was created. Genetic algorithm was used to solve the problem so that the scanning path could be optimized in three dimensions. The new method was compared with the traditional methods such as trapezoidal scanning  and line scanning method. Results show that the general scanning path of this method is shorter and use fewer attitudes.The average scanning efficiency was increased by 14.4%. The scanning simulation of robot with a scanner along the optimized path was completed, meeting all constraints requirements using DELMIA software platform, and the time of simulation was the same to the calculated value.

出版日期: 2015-08-28
:  TP 24  
基金资助:

国家自然科学基金资助项目(51275463);中央高校基本科研业务费专项资金资助项目(2015FZA4002)

通讯作者: 俞慈君,男,助理研究员     E-mail: yuppy@zju.edu.cn
作者简介: 艾小祥(1988-),男,硕士生,从事飞机数字化装配技术研究. E-mail: zjuchange@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

艾小祥,俞慈君,方强,陈磊,方伟,沈立恒. 基于遗传算法的机翼壁板扫描路径优化[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.03.008.

AI Xiao-xiang, YU Ci-jun, FANG Qiang, CHEN Lei, FANG Wei, SHEN Li-heng. Optimized scanning path of wing panel based on genetic algorithm. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.03.008.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.03.008        http://www.zjujournals.com/eng/CN/Y2015/V49/I3/448

[1] 马素文. 三维激光扫描在测量中的应用现状[J]. 山西建筑,2011, 37(9): 207-208.
MA Su-wen. Application status of 3D laser scanner in the measurement [J]. Shanxi Architecture, 2011, 37(9): 207-208.
[2] LEE K H, PARK H. Automated inspection planning of free-form shape parts by laser scanning [J]. Robotics and Computer Integrated Manufacturing. 2000, 16(4) : 201-210.
[3] ZHAO H B, KRUTH J, VEN GESTEL N, et al. Automated dimensional inspection planning using the combination of laser scanner and tactile probe[J]. Measurement.  2012, 45(5): 1057-1066.
[4] 李剑. 基于激光测量的自由曲面数字制造基础技术研究[D]. 杭州: 浙江大学, 2001: 1593.
LI Jian. Fundamental research of digital manufacturing of freeform surface based on laser measurement [D]. Hangzhou: Zhejiang University, 2001: 1593.
[5] 李雄兵, 杨岳, 胡宏伟,等. 面向超声检测的曲面自动测量[J], 中南大学学报, 2010, 41(1): 194-199.
LI Xiong-bing, YANG Yue, HU Hong-wei, et al. Complex surface automatic measurement for ultrasonic inspection [J]. Journal of Central South University, 2010, 41(1): 194-199.
[6] 海克斯康测量技术(青岛)有限公司. 实用坐标测量技术[M]. 北京: 化学工业出版社,2007: 99-106.
[7] HAGENIERS O L. Recent advances in laser triangulation-based measurement of airfoil surfaces [C]∥ Industrial Optical Sensors for Metrology and Inspection. Canada: [s. n.], 1995: 222.
[8] 宋开臣. 三坐标测量机激光扫描测量系统的研究[D]. 天津: 天津大学, 1997: 32-34.
SONG Kai-chen. Research of CMM and system of laser measurement [D]. Tianjing: Tianjing University. 1997: 32-34.
[9] 程志刚, 王巧生. 模具高速加工中的走刀路径策略[J].模具制造技术, 2006, 8(2): 61-63.
CHENG Zhi-gang, WANG Qiao-sheng. Cutting route strategy in mold high-speed milling [J]. Mold Manufacturing Technology, 2006, 8(2): 61-63.
[10] 吴光琳, 李从心, 阮雪榆. 型腔加工中的行切方向的优化方法[J]. 模具技术, 1999, (2): 17.
WU Guang-lin, LI Cong-xin, RUAN Xue-yu. Optimization of the direction of direction-parallel cutting in pocket machining [J]. Die and Mould Technology, 1999, (2) : 17.
[11] 丛明煜, 王丽萍. 智能化遗传算法[J]. 高技术通讯, 2003, 13(4): 43-48.
CONG Ming-yu, WANG Li-ping. Intelligent genetic algorithm [J]. High Technology Letters, 2003, 13(4): 43-48.
[12] 吴沧浦. 最优控制的理论与方法[M]. 北京:国防工业出版社,2000: 108226.
[13] 雷英杰, 张善文, 李续武,等. MATLAB遗传算法工具箱及应用[M]. 西安:西安电子科技大学出版社. 2005: 34-43.

[1] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[2] 张铭奎, 程文明, 刘放. 助力外骨骼负载特征与驱动特征耦合效应[J]. 浙江大学学报(工学版), 2017, 51(4): 807-816.
[3] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[4] 陈鹏, 项基, 韦巍. 基于GWLN方法的冗余机械臂关节力矩约束控制[J]. 浙江大学学报(工学版), 2017, 51(1): 68-74.
[5] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[6] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[7] 张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1980-1986.
[8] 朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1637-1645.
[9] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[10] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[11] 丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 2016, 50(7): 1298-1306.
[12] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[13] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[14] 黄水华,江沛,韦巍,项基,彭勇刚. 基于四元数的机械手姿态定向控制[J]. 浙江大学学报(工学版), 2016, 50(1): 173-179.
[15] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.