Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (11): 2280-2289    DOI: 10.3785/j.issn.1008-973X.2022.11.019
土木工程     
高温后碳纳米管混凝土力学性能及细观结构变化
田威1(),高芳芳2,*(),贺礼1
1. 长安大学 建筑工程学院,陕西 西安 710061
2. 兰州理工大学 土木工程学院,甘肃 兰州 710050
Variation of mechanical property and meso structure of MWCNTs concrete exposed to high temperature
Wei TIAN1(),Fang-fang GAO2,*(),Li HE1
1. School of Civil Engineering, Chang’an University, Xi’an 710061, China
2. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 710050, China
 全文: PDF(4522 KB)   HTML
摘要:

为了探究多壁碳纳米管(MWCNTs)对高温后混凝土力学性能和细微观结构的作用机制,采用单轴压缩、计算机断层扫描(X-ray?CT)和电镜扫描(SEM)对高温后MWCNTs增强混凝土的抗压强度、孔径、孔隙率、微观形貌及水化产物的变化趋势进行试验研究. 结果表明,高温后MWCNTs增强混凝土强度损失比普通混凝土降低了11.15%~27.60%;MWCNTs的填充和桥接作用可以阻碍并延缓混凝土内部裂缝的扩展,并对600 ℃以下混凝土内部孔隙网络的形成具有有利影响. 分析冷却方式对混凝土性能的影响发现,浸水冷却引发强烈的热冲效应导致混凝土的性能急速下降,短时间的喷淋冷却有利于高温后混凝土性能的恢复,混凝土试样在空气中自然冷却的损伤程度介于上述两者之间.

关键词: 多壁碳纳米管混凝土抗压强度细观结构高温X-ray CT    
Abstract:

The action mechanism of multi walled carbon nanotubes (MWCNTs) on the mechanical properties and meso structure of concrete exposed to high temperature was explored. The compressive strength was studied by the uniaxial compression test. The pore characteristics were detected by computer tomography (X-ray CT) technology. The micro morphology and hydration products were observed by scanning electron microscope (SEM). The results showed that the strength loss of MWCNTs in high temperature compared with ordinary plain concrete reinforced concrete decreased by 11.15%—27.60%. The filling and bridging effect of MWCNTs hindered and delayed the expansion of internal cracks in concrete. MWCNTs had a certain beneficial effect on the formation of internal pore network of the concrete below 600 ℃. The influence of cooling mode on the performance of concrete was also considered. The quench cooling caused a strong thermal shock effect, which led to the rapid decline of performance of concrete. The spray cooling was beneficial to the recovery of properties of concrete exposed to high temperature in a short time. The damage degree of the concrete specimen cooled naturally in air was between the above two.

Key words: MWCNTs concrete    compressive strength    meso structure    high temperature    X-ray CT
收稿日期: 2021-11-18 出版日期: 2022-12-02
CLC:  TU 525.9  
基金资助: 国家自然科学基金资助项目(51379015,51579013);长安大学优秀博士学位论文培育项目(300102281723)
通讯作者: 高芳芳     E-mail: tianwei@chd.edu.cn;429757009@qq.com
作者简介: 田威(1981—),男,教授,从事岩土材料细观力学分析研究. orcid.org/0000-0001-6480-4321. E-mail: tianwei@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
田威
高芳芳
贺礼

引用本文:

田威,高芳芳,贺礼. 高温后碳纳米管混凝土力学性能及细观结构变化[J]. 浙江大学学报(工学版), 2022, 56(11): 2280-2289.

Wei TIAN,Fang-fang GAO,Li HE. Variation of mechanical property and meso structure of MWCNTs concrete exposed to high temperature. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2280-2289.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.019        https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2280

混凝土分组 ρ/(kg·m?3 S/mm fc/MPa
水泥 粗骨料 细骨料 减水剂 碳纳米管 分散剂
PC 350 1150 646 157 1.75 ? ? 122 62.45
MC 350 1150 646 157 2.80 0.28 0.56 164 66.86
表 1  混凝土配比
图 1  混凝土试样制备
第1组 冷却方式 第2组 冷却方式
PC-N 自然冷却 MC-N 自然冷却
PC-S 喷淋冷却 MC-S 喷淋冷却
PC-Q 浸水冷却 MC-Q 浸水冷却
表 2  混凝土试样分组
图 2  试验设备及试验流程图
图 3  高温-冷却后混凝土试样表观特征
图 4  高温-冷却后混凝土的残余抗压强度
图 5  高温后MWCNTs混凝土和普通混凝土的微观形貌对比
图 6  多壁碳纳米管(MWCNTs)混凝土的热重曲线
图 7  温度对MWCNTs混凝土水化产物C-S-H的影响
图 8  高温后MWCNTs混凝土的残余抗压强度与水化硅酸钙凝胶(C-S-H)质量损失率之间的关系
图 9  混凝土CT图像处理过程
图 10  高温-冷却后混凝土试样轴向CT扫描断面灰度图
图 11  MWCNTs对混凝土高温-冷却性能的强化机理
图 12  混凝土孔隙率沿其CT扫描方向的分布
图 13  高温-冷却后MWCNTs混凝土孔隙率与抗压强度之间的关系
1 TREACY M J, EBBESEN T W, GIBSON J M Exceptionally high Young’s modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381 (6584): 678
doi: 10.1038/381678a0
2 GAO Fang-fang, TIAN Wei, WANG Zheng, et al Effect of diameter of multi-walled carbon nanotubes on mechanical properties and microstructure of the cement-based materials[J]. Construction and Building Materials, 2020, 260: 120452
doi: 10.1016/j.conbuildmat.2020.120452
3 XU S, LIU J, LI Q Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement-based materials[J]. Construction and Building Materials, 2015, 76: 16- 23
doi: 10.1016/j.conbuildmat.2014.11.049
4 NALON G H, RIBEIRO J, ENDD ARAÚJO, et al Residual mechanical properties of mortars containing carbon nano materials exposed to high temperatures[J]. Construction and Building Materials, 2021, 275: 122123
doi: 10.1016/j.conbuildmat.2020.122123
5 VIANA T M, BACELAR B A, COELHO I D, et al Behaviour of ultra-high performance concretes incorporating carbon nanotubes under thermal load[J]. Construction and Building Materials, 2020, 263: 120556
doi: 10.1016/j.conbuildmat.2020.120556
6 GAO Fang-fang, TIAN Wei, CHENG Xu Investigation of moisture migration of MWCNTs concrete after different heating-cooling process by LF-NMR[J]. Construction and Building Materials, 2021, 288: 123146
7 CARRIÇO A, BOGAS J A, HAWREEN A, et al Durability of multi-walled carbon nanotube reinforced concrete[J]. Construction and Building Materials, 2018, 164: 121- 133
8 SARSHAR R, KHOURY G A Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures[J]. Magazine of Concrete Research, 1993, 162: 51- 61
9 吕天启, 赵国藩, 林志伸 高温后静置混凝土力学性能试验研究[J]. 建筑结构学报, 2004, 25 (1): 63- 70
LV Tian-qi, ZHAO Guo-fan, LIN Zhi-shen Experimental study on mechanical properties of long standing concrete after exposure to high temperature[J]. Journal of Building Structures, 2004, 25 (1): 63- 70
doi: 10.3321/j.issn:1000-6869.2004.01.009
10 PENG Gai-fei, BIAN Song-Hua, GUO Zhan-Qi, et al Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures[J]. Construction and Building Materials, 2008, 22: 948- 955
11 POP E, MANN D, WANG Q, et al Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2006, 6 (1): 96- 100
doi: 10.1021/nl052145f
12 BALOCH W L, KHUSHNOOD R A, MEMON S A, et al Effect of elevated temperatures on mechanical performance of normal and lightweight concretes reinforced with carbon nanotubes[J]. Fire Technology, 2018, 54 (5): 1331- 1367
doi: 10.1007/s10694-018-0733-z
13 YU Z, LAU D Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete[J]. Coupled Systems Mechanics, 2017, 6 (3): 335- 349
14 SIKORA P, ABD ELRAHMAN M, CHUNG S Y, et al Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature[J]. Cement and Concrete Composites, 2019, 95: 193- 204
doi: 10.1016/j.cemconcomp.2018.11.006
15 BALOCH W L, KHUSHNOOD R A, KHALIQ W Influence of multi-walled carbon nanotubes on the residual performance of concrete exposed to high temperatures[J]. Construction and Building Materials, 2018, 185: 44- 56
doi: 10.1016/j.conbuildmat.2018.07.051
16 SEDAGHATDOOST A, BEHFARNIA K Mechanical properties of Portland cement mortar containing multi-walled carbon nanotubes at elevated temperatures[J]. Construction and Building Materials, 2018, 176: 482- 489
17 ZHANG L W, KAI M F, LIEW K M Evaluation of microstructure and mechanical performance of CNT-reinforced cementitious composites at elevated temperatures[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 286- 293
doi: 10.1016/j.compositesa.2017.02.001
18 MIRZA O, WILKINS K Behaviour of the headed stud shear connectors on composite steel-concrete beams under elevated temperatures utilising carbon nanotube[J]. Nederlands Archief Voor Kerkgeschiedenis, 2016, 60 (6): 114- 115
19 DURGUN M Y, SEVINÇ A H High temperature resistance of concretes with GGBFS, waste glass powder, and colemanite ore wastes after different cooling conditions[J]. Construction and Building Material, 2019, 196: 66- 81
20 ERCOLANI G, ORTEGA N F, PRIANO C, et al Physical–mechanical behavior of concretes exposed to high temperatures and different cooling systems[J]. Structural Concrete, 2017, 18 (3): 487- 495
doi: 10.1002/suco.201500202
21 SHAIKH F U A Effect of cooling on the residual mechanical properties and cracking of plain and fibrous geopolymer concretes at elevated temperatures[J]. Structural Concrete, 2019, 20 (5): 1583- 1595
doi: 10.1002/suco.201800267
22 POON C S, AZHAR S, ANSON M, et al Strength and durability recovery of fire-damaged concrete after post-fire-curing[J]. Cement and Concrete Research, 2001, 31 (9): 1307- 1318
doi: 10.1016/S0008-8846(01)00582-8
23 XUAN D X, SHUI Z H Rehydration activity of hydrated cement paste exposed to high temperature[J]. Fire and Materials, 2011, 35: 481- 490
doi: 10.1002/fam.1067
24 JIA P, DONG J F, ZHANG G M, et al Effects of cement dosage and cooling regimes on the compressive strength of concrete after post-fire-curing from 800℃[J]. Construction and Building Materials, 2017, 142: 208- 220
25 HE Yong-jia, ZHENG Xiao-hui, LV Lin-nv, et al Dehydration characteristics of C-S-H with Ca/Si ratio 1.0 prepared via precipitation[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33 (3): 619- 624
doi: 10.1007/s11595-018-1869-x
26 BALÁZS G L, LUBLÓY V, FLDES T Evaluation of concrete elements with X-Ray computed tomography[J]. Journal of Materials in Civil Engineering, 2018, 30 (9): 1- 9
27 CARRARA P, KRUSE R, BENTZ D P, et al Improved mesoscale segmentation of concrete from 3D X-ray images using contrast enhancers[J]. Cement and Concrete Composites, 2018, 93: 30- 42
28 LU Liu-lei, OUYANG Dong, XU Wei-ting Mechanical properties and durability of ultra-high strength concrete incorporating multi-walled carbon nanotubes[J]. Materials, 2016, 9 (6): 419
doi: 10.3390/ma9060419
29 GAO Fang-fang, TIAN Wei, WANG Ya-wei, et al Effect of the dosage of MWCNTs on deterioration resistant of concrete subjected to combined freeze–thaw cycles and sulfate attack[J]. Structural Concrete, 2020, 22 (Suppl. 1): E955- E965
30 SHAIKH F U A, VIMONSATIT V Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperatures[J]. Fire and Materials, 2016, 40 (2): 335- 350
doi: 10.1002/fam.2276
31 CONG X, KIRKPATRICK R J Effects of the temperature and relative humidity on the structure of C-S-H gel[J]. Cement and Concrete Research, 1995, 25 (6): 1237- 1245
doi: 10.1016/0008-8846(95)00116-T
32 SEDAGHATDOOST A, BEHFARNIA K, BAYATI M The effect of curing period on the residual strength of Portland cement mortar containing MWCNTs at elevated temperature[J]. Construction and Building Materials, 2019, 196: 144- 153
33 刁加加, 常春蕊, 张好强, 等 高温热处理碳纳米管活性实验研究[J]. 南京理工大学学报, 2017, 41 (3): 386- 392
DIAO Jia-jia, CHANG Chun-rui, ZHANG Hao-qiang, et al Experimental study of activation for carbon nanotubes through high-temperature heat treatment[J]. Journal of Nanjing University of Science and Technology, 2017, 41 (3): 386- 392
doi: 10.14177/j.cnki.32-1397n.2017.41.03.017
34 杜红秀, 张雄, 韩继红 混凝土构筑物的火灾危害与损伤评估[J]. 建筑材料学报, 1998, 1 (2): 175- 181
DU Hong-xiu, ZHANG Xiong, HAN Ji-hong Testing and evaluation on the fire harms and damages of concrete structure[J]. Journal of Building Materials, 1998, 1 (2): 175- 181
35 SINHA S, BARJAMI S, IANNACCHIONE G, et al Off-axis thermal properties of carbon nanotube films[J]. Journal of Nanoparticle Research, 2005, 7 (6): 651- 657
doi: 10.1007/s11051-005-8382-9
[1] 李艺隆,国振,徐强,李雨杰. 海水环境下MICP胶结钙质砂干湿循环试验研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1740-1749.
[2] 林晓青,应雨轩,余泓,李晓东,严建华. 流化床垃圾焚烧炉烟气停留时间计算及预测[J]. 浙江大学学报(工学版), 2022, 56(8): 1578-1587.
[3] 赵一飞,方梦祥,史勇敏,夏芝香,岑建孟. 高温热解煤气放电性能的影响因素[J]. 浙江大学学报(工学版), 2021, 55(11): 2115-2124.
[4] 吴敬理,伊国栋,裘乐淼,张树有. 高温混合障碍空间中的移动机器人路径规划[J]. 浙江大学学报(工学版), 2021, 55(10): 1806-1814.
[5] 葛培,黄炜,李萌. 再生砖骨料混凝土架构模型试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 10-19.
[6] 张勤玲,黄志义. 高温高湿盐环境下SBS改性沥青胶浆的高温性能[J]. 浙江大学学报(工学版), 2021, 55(1): 38-45.
[7] 周陈颖,周昊,邢裕健,张佳凯,周明熙. 添加剂对高碱煤灰渣流动特性及钠捕获效率的影响[J]. 浙江大学学报(工学版), 2020, 54(3): 623-630.
[8] 朱剑锋,庹秋水,邓温妮,饶春义,刘浩旭. 镁质水泥复合固化剂固化有机质土的抗压强度模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2168-2174.
[9] 徐力刚, 黄亚继, 王健, 邹磊, 岳峻峰. 还原性气氛下水冷壁材料15CrMoG的高温腐蚀特性[J]. 浙江大学学报(工学版), 2018, 52(8): 1535-1541.
[10] 罗华, 陈祖煜, 龚国芳, 赵宇, 荆留杰, 王超. 基于现场数据的TBM掘进速率研究[J]. 浙江大学学报(工学版), 2018, 52(8): 1566-1574.
[11] 柳佳佳, 岑建孟, 方梦祥, 陈泉霖. 不同气体成分下高温直流放电特性[J]. 浙江大学学报(工学版), 2018, 52(5): 971-979.
[12] 郭小农, 于孟同, 梁水平, 李检保. 铝合金板件不锈钢螺栓连接的高温承载性能分析[J]. 浙江大学学报(工学版), 2017, 51(9): 1695-1703.
[13] 范圣刚, 张岁寒, 孟畅. 高温冷却后奥氏体不锈钢力学性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2348-2354.
[14] 严佩, 翁卫国, 郑成航, 许希, 沈之旸, 高翔, 倪明江, 岑可法. 水泥窑尾粉尘性质对高温静电捕集的影响规律[J]. 浙江大学学报(工学版), 2017, 51(10): 1959-1966.
[15] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.