Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1845-1855    DOI: 10.3785/j.issn.1008-973X.2022.09.018
机械工程     
复合驱动双指柔性机械手的设计与控制
吴全会1,2(),邵旭辉1,2,潘柏松1,2,*(),施罗杰1,2
1. 浙江工业大学 特种装备制造与先进加工技术教育部重点实验室,浙江 杭州 310032
2. 浙江工业大学 机械工程学院,浙江 杭州 310032
Design and control of compound driven two-finger flexible manipulator
Quan-hui WU1,2(),Xu-hui SHAO1,2,Bai-song PAN1,2,*(),Luo-jie SHI1,2
1. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
 全文: PDF(3797 KB)   HTML
摘要:

为了满足工业领域中形状多变、物性多样、尺寸不一的复杂目标件抓取需求,模仿人手指关节并依据双指贴合抓取原理,设计达到包络贴合状态的双指柔性机械手. 分析目标件外形轮廓的结构特点,提取目标件轮廓的抓取特征,获得柔性机械手的结构运动原理.根据柔性机械手运动原理,进行目标件包络夹取过程的数学建模与仿真分析, 搭建平台验证柔性机械手的性能.该机械手由柔性机械手指、驱动部件和位置补偿机构组成,可以实现圆柱体、圆锥件、长方体类零件的适应性抓取,具有较高的抓取可靠性与稳定性.

关键词: 复合驱动柔性机械手机械设计伺服控制抓取实验    
Abstract:

In order to meet the grasping requirements of complex target parts with complex shapes, diverse physical properties, and different sizes in the industrial field, the imitating human finger joints and two finger fit grasping principles were used, and a two finger flexible manipulator was designed to realize the grasping target parts and achieve the state of envelope fitting. Firstly, the structural characteristics of the target part contour were analyzed. Secondly, the grasping contour characteristics were extracted to obtain the structural motion principle of the flexible manipulator. According to the motion principle of the flexible manipulator, the mathematical modeling and simulation analysis of the envelope clamping process were carried out. Finally, the platform was built to verify the flexible manipulator performance. The manipulator is composed of flexible mechanical fingers, driving parts and position compensation mechanism, which can realize the adaptive grasping of cylinder, cone and cuboid parts, and has high grasping reliability and stability.

Key words: compound drive    flexible manipulator    mechanical design    servo control    grab experiment
收稿日期: 2021-09-11 出版日期: 2022-09-28
CLC:  TP 241.2  
基金资助: 国家自然科学基金资助项目(51475425);浙江省自然科学基金资助项目(LQ20E050021);浙江省科技计划资助项目(2021C01097)
通讯作者: 潘柏松     E-mail: wuqh@zjut.edu.cn;panbsz@zjut.edu.cn
作者简介: 吴全会(1986—),男,讲师,博士,从事装备制造及自动化技术研究. orcid.org/0000-0002-5840-2884. E-mail: wuqh@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴全会
邵旭辉
潘柏松
施罗杰

引用本文:

吴全会,邵旭辉,潘柏松,施罗杰. 复合驱动双指柔性机械手的设计与控制[J]. 浙江大学学报(工学版), 2022, 56(9): 1845-1855.

Quan-hui WU,Xu-hui SHAO,Bai-song PAN,Luo-jie SHI. Design and control of compound driven two-finger flexible manipulator. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1845-1855.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.018        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1845

图 1  柔性机械手原理简图
图 2  柔性机械手手指单元几何简化模型
图 3  柔性机械手对圆柱类零件微偏夹取原理图
${\alpha _0}/(^\circ )$ $R/{\rm{mm}}$ ${Y_{PP'} }/{\rm{mm}}$ $P_y'/{\rm{mm}}$ ${\alpha _1}/(^\circ )$ $\alpha _1'/(^\circ )$ $\alpha _3'/(^\circ )$
55 50 0.466 97.291 51.61 45.14 59.03
60 50 0.363 101.272 40.92 35.00 47.52
65 50 0.295 104.277 30.73 25.26 36.74
65 55 0.414 103.221 37.05 30.93 44.05
65 60 0.947 100.389 45.58 38.23 55.73
表 1  微调偏差运动状态参数
图 4  双指柔性机械手总体结构图
图 5  双指柔性机械手手指部分的结构图
图 6  机械手手指驱动部分的结构图
参数 数值 参数 数值
指根节两连孔距L0 55 指尖节销孔接距L3 50
指根节推杆孔距L1 45 指尖节孔到指尖L4 70
指根节孔到边距K 50 指尖节销孔定位Q 26
中指节两连接孔L2 55 指根座连接点距L5 68
表 2  机械手实物尺寸参数
图 7  机械手夹取长方体目标件模型图
图 8  夹取长方体类目标件时指根节扭转角度变化图
图 9  机械手夹取圆柱件时仿真模型图
图 10  机械手夹取直径为100 mm的圆柱件时扭转角度与圆柱体到机械手固定板的间距变化图
图 11  机械手夹取直径为100 mm的圆柱件夹取力变化图
图 12  机器人与机械手控制系统流程
图 13  上位机控制界面图
图 14  下位机系统接线图
图 15  柔性机械手工作逻辑图
图 16  机器人仿真系统三维模型示意图
参数类型 L0 L1 L2 L3 L4 L5 K Q
mm
设计 55.00 45.00 55.00 50.00 70.00 68.00 50.00 26.00
实际 55.18 44.86 55.24 50.06 69.82 67.94 49.86 26.04
表 3  机械手设计尺寸与实物尺寸对比
参数类型 k1, k2/(N·mm) d1, d2/(mm) a1, a2/(°)
设计 8.67, 3.50 1.60, 1.20 0, 0
实际 8.52, 3.56 1.58, 1.22 2.1, ?3.2
表 4  机械手扭弹簧参数的设计数值与实际数值对比
图 17  双指柔性机械手及其控制平台
图 18  机械手指根节扭转角与指根节推板移动距离的关系
图 19  机械手夹取直径为100 mm圆柱件时夹取力与气压的关系
图 20  机械手夹取长方体件、圆柱件和倾角类零件状态图
1 周济 智能制造: “中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26 (17): 2273- 2284
ZHOU Ji Intelligent manufacturing: main direction of “Made in China 2025”[J]. China Mechanical Engineering, 2015, 26 (17): 2273- 2284
doi: 10.3969/j.issn.1004-132X.2015.17.001
2 郑泽钿, 陈银清, 林文强, 等 工业机器人上下料技术及数控车床加工技术组合应用研究[J]. 组合机床与自动化加工技术, 2013, (7): 105- 109
ZHENG Ze-dian, CHEN Yin-qing, LIN Wen-qiang, et al Study on groupware applications about industrial robot to load-unload workpiece and the processing technology of NC lathe[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2013, (7): 105- 109
doi: 10.3969/j.issn.1001-2265.2013.07.032
3 JAYASWAL K, PALWALIA D K, KUMAR S Analysis of robust control method for the flexible manipulator in reliable operation of medical robots during COVID-19 pandemic[J]. Microsystem Technologies, 2020, 27: 2103- 2116
4 BIAN Y, GAO Z, LV X, et al Theoretical and experimental study on vibration control of flexible manipulator based on internal resonance[J]. Journal of Vibration and Control, 2018, 24 (15): 3321- 3337
doi: 10.1177/1077546317704792
5 WANG Y, ZHANG R, JU F, et al A light cable-driven manipulator developed for aerial robots: structure design and control research[J]. International Journal of Advanced Robotic Systems, 2020, 17 (3): 1- 14
6 席浩洋, 王挺, 姚辰, 等 基于电机驱动的仿生柔性机械手研究[J]. 高技术通讯, 2019, 29 (4): 362- 370
XI Hao-yang, WANG Ting, YAO Chen, et al Research on bionic soft gripper drived by motor[J]. Chinese High Technology Letters, 2019, 29 (4): 362- 370
doi: 10.3772/j.issn.1002-0470.2019.04.007
7 PHUTANE U, ROLLER M, BJÖRKENSTAM S, et al. Optimal control simulations of two-finger precision grasps [M]// KECSKEMÉTHY A, GEU FLORES F. Multibody Dynamics 2019. [S. l.]: Springer, 2020: 60-67.
8 LIONEL B. Enhancing versatility and safety of industrial grippers with adaptive robotic fingers [C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 2911-2916.
9 ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al Soft robotics for chemists[J]. Angewandte Chemie, 2011, 50 (8): 1890- 1895
doi: 10.1002/anie.201006464
10 LITTLEFIELD Z, ZHU S, KOURTEV H, et al. Evaluating end-effector modalities for warehouse picking: a vacuum gripper vs a 3-finger underactuated hand [C]// 2016 IEEE International Conference on Automation Science and Engineering. Fort Worth: IEEE, 2016: 1190-1195.
11 ANVER H M C M, MUTLU R, ALICI G. 3D printing of a thin-wall soft and monolithic gripper using fused filament fabrication [C]// 2017 IEEE International Conference on Advanced Intelligent Mechatronics. Munich: IEEE, 2017: 442-447.
12 董增雅, 高谦, 高国华, 等 柔性吞咽机械手的结构设计与样机试验[J]. 机电工程, 2018, 35 (12): 1304- 1309
DONG Zeng-ya, GAO Qian, GAO Guo-hua, et al Structure design and prototype test of flexible swallowing manipulator[J]. Journal of Mechanical and Electrical Engineering, 2018, 35 (12): 1304- 1309
doi: 10.3969/j.issn.1001-4551.2018.12.009
13 金波, 林龙贤 果蔬采摘欠驱动机械手爪设计及其力控制[J]. 机械工程学报, 2014, 50 (19): 1- 8
JIN Bo, LIN Long-xian Design and force control of an underactuated robotic hand for fruit and vegetable picking[J]. Journal of Mechanical Engineering, 2014, 50 (19): 1- 8
doi: 10.3901/JME.2014.19.001
14 王作桓, 莫浩明, 梁国威, 等 一种柔性机械手设计与分析[J]. 机电工程技术, 2019, 48 (9): 135- 137
WANG Zuo-huan, MO Hao-ming, LIANG Guo-wei, et al Design and analysis of a flexible manipulator[J]. Mechanical and Electrical Engineering Technology, 2019, 48 (9): 135- 137
doi: 10.3969/j.issn.1009-9492.2019.09.043
15 耿德旭, 刘洪波, 赵云伟, 等 气动四指柔性机械手结构功能和抓取实验研究[J]. 机床与液压, 2019, 47 (9): 14- 17
GENG De-xu, LIU Hong-bo, ZHAO Yun-wei, et al Structure design and grasp experiment of pneumatic flexible four-finger hand[J]. Machine Tool and Hydraulics, 2019, 47 (9): 14- 17
doi: 10.3969/j.issn.1001-3881.2019.09.003
16 杨孟涛, 黎泽伦, 杨永刚 一种组合式气动柔性机械手设计[J]. 液压与气动, 2020, (5): 52- 55
YANG Meng-tao, LI Ze-lun, YANG Yong-gang Design of a combined pneumatic flexible manipulator[J]. Chinese Hydraulics and Pneumatics, 2020, (5): 52- 55
doi: 10.11832/j.issn.1000-4858.2020.05.009
[1] 李健,戴楚彦,王扬威,郭艳玲,查富生. 基于草莓轮廓曲线的单指软体采摘抓手设计与优化[J]. 浙江大学学报(工学版), 2022, 56(6): 1088-1096, 1134.
[2] 乔锟, 王新杰. PLZT/PVDF层合柔性悬臂梁的驱动特性[J]. 浙江大学学报(工学版), 2018, 52(10): 1874-1879.
[3] 张斌, 邓乾坤, 王双, 杨华勇. 压力脉冲试验伺服控制系统机理分析与仿真试验[J]. 浙江大学学报(工学版), 2015, 49(2): 275-281.
[4] 冯培恩,李志萍,李立新,刘伟平. 机械镜射对称的概念、效能及应用[J]. J4, 2011, 45(7): 1215-1220.
[5] 程红太,张晓华. 一类欠驱动机械系统的虚约束动态伺服控制[J]. J4, 2011, 45(5): 818-824.
[6] 曹剑, 朱笑丛, 陶国良. 气动伺服控制中特性参数与结构参数的辨识[J]. J4, 2010, 44(3): 569-573.
[7] 纪杨建 祁国宁 林见. 基于规则的机械运动功能方案生成方法[J]. J4, 2007, 41(8): 1265-1270.