Please wait a minute...
J4  2011, Vol. 45 Issue (5): 818-824    DOI: 10.3785/j.issn.1008-973X.2011.05.007
电气工程     
一类欠驱动机械系统的虚约束动态伺服控制
程红太,张晓华
哈尔滨工业大学 电气工程及自动化学院,黑龙江 哈尔滨 150001
Virtual constraints based dynamical servo control for a class of
underactuated mechanical systems
CHENG Hong-tai, ZHANG Xiao-hua
Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China
 全文: PDF  HTML
摘要:

为了克服欠驱动机械系统无法对任意点和轨迹进行跟踪的缺点,扩大欠驱动机械系统应用领域,研究一类欠驱动机械系统的动态伺服控制问题,动态伺服控制通过规划和跟踪特定轨迹来实现任意位形空间点的瞬时可达.采用虚约束方法来规划动态伺服轨迹,通过构造自由度之间的约束关系,并对约束作用下系统零动态进行分析,可以方便获得符合系统特性的周期轨道;利用虚约束函数与轨道函数之间的内在联系,基于Lyapunov稳定性理论设计轨迹跟踪控制器.最后,在Acrobot实物平台上进行了实验,实验结果证明轨迹规划方法和控制方法的有效性.

Abstract:

To overcome the shortcomings of underactuated mechanical systems which are unable to track arbitary point and trajectory, give full play to the resource and energy comsuming advantage and enlarge the application area, the dynamical servo control problem for a class of underactuated mechanical systems was studied. The dynamcal servo control aims to realize reaching any point in configuration space by planning and tracking specific trajectory. The virtual constraints method was used to plan the dynamcial servo trajectory. By constructing the constraint relation between freedoms and analysing the system zero dynamics , periodic orbits meeting system dynamics were gained easily. Using the inner connection between the virtual constraints and orbit function, a orbit tracking controller was designed based on Lyapunov stability theory. The experiment was performed on the Acrobot Platform and experiment results shows the effectiveness of the trajectory planning method and control method.

出版日期: 2011-11-24
:  TP 273  
基金资助:

国家自然科学基金资助项目(60875066).

通讯作者: 张晓华,男,教授,博导.     E-mail: zxhhit@126.com
作者简介: 程红太(1985-),男,河南漯河人,博士生,从事欠驱动机械系统及非线性控制研究.E-mail:redsun_cheng@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

程红太,张晓华. 一类欠驱动机械系统的虚约束动态伺服控制[J]. J4, 2011, 45(5): 818-824.

CHENG Hong-tai, ZHANG Xiao-hua. Virtual constraints based dynamical servo control for a class of
underactuated mechanical systems. J4, 2011, 45(5): 818-824.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.05.007        https://www.zjujournals.com/eng/CN/Y2011/V45/I5/818

[1] SPONG M W. The swing up control problem for the Acrobot [J]. IEEE Control Systems Magazine, 1995,15(1):49-55.
[2] XIN X, KANEDA M. The swing up control for the Acrobot based on energy control approach [C]∥Proceeding of the 41st IEEE Conferenceon Decision and Control. Las Vegas: IEEE, 2002,1 :3261-3266.
[3] BERKEMEIER M D, FEARING R S. Tracking fast inverted trajectories of the underactuated Acrobot [J]. IEEE Trans. on Robotics and Automation, 1999, 15(4):740-750.
[4] 张晓华, 程红太, 赵旖旎. 基于能量的Acrobot动态伺服控制[J]. 控制与决策,2008,23(11), 1258-1262.
ZHANG Xiaohua, CHENG Hongtai, ZHAO Yini. Energy based dynamical servo control for the Acrobot [J]. Control and Decision,2008,23(11): 1258-1262.
[5] CHUNG C C, HAUSER J. Nonlinear control of a swinging pendulum [J].Automatica, 1995, 31 (6) : 851-862.
[6] 程红太, 赵旖旎,张晓华,Acrobot动态伺服控制及其对称虚约束方法研究[J],自动化学报,2010,36(11):1594-1600.
CHENG Hongtai, Zhao Yini, Zhang Xiaohua. Study of dynamical servo control for the acrobot and symmetrical virtual constraints method [J]. ACTA AUTOMATICA SINICA,2010,36(11): 1594-1600.
[7] SHIRIAEV A, PERRAM J W, CANUDAS DE WIT. Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach [J]. IEEE Trans. on Automatic Control, 2005, 50(8): 1164-1176.
[8] METTIN U, LA HERA P, FREIDOVICH L, et al. Generating humanlike motions for an underactuated threelink robot based on the virtual constraints approach [C]∥ Proceeding of the 46th IEEE Conference on Decision and Control. New Orleans: IEEE, 2007, 1:5138-5143.
[9] SHIRIAEV A, PERRAM J, ROBERTSSON A, et al. Explicit formulas for general integrals of motion for a class of mechanical systems subject to virtual constraints [C]∥ Proceeding of the 43rd IEEE Conference on Decision and Control. Nassau, Bahamas: IEEE, 2004, 2:1158-1163.
[10] SHIRIAEV A, SANDBERG A, CANUDAS DE WIT. Motion planning and feedback stabilization of periodic orbits for an acrobat [C]∥Proceeding of the 43rd IEEE Conference on Decision and Control. Nassau, Bahamas: IEEE, 2004 , 1:290-295.
[11] SHIRIAEV A, FREIDOVICH L, ROBERTSSON A. Virtual constraints based design of stable oscillations of furuta pendulum: Theory and experiments [C]∥ Proceeding of the 45th IEEE Conference on Decision and Control. San Diego, CA, USA:IEEE, 2006. 1:6144-6149.
[12] SLOTINE J J, LI W, Applied nonlinear control [M]. Englewood Cliffs, NJ: Prentice Hall, 1991:207-213.

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[6] 叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.
[7] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[8] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[9] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[10] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[11] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[12] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[13] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[14] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[15] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.