Please wait a minute...
浙江大学学报(工学版)
机械工程     
压力脉冲试验伺服控制系统机理分析与仿真试验
张斌, 邓乾坤, 王双, 杨华勇
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Mechanism analysis, simulation and experiment study of dynamic servo control system of periodic high pressure impact
ZHANG Bin, DENG Qian-kun, WANG Shuang, YANG Hua-yong
The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027
 全文: PDF(1298 KB)   HTML
摘要:

为实现压力脉冲试验中标准压力波形的精确动态跟踪控制,满足高压力高频率持续冲击的要求,建立该试验的液压伺服系统与测控平台.将飞机用作动筒和伺服阀等被试液压件处理为封闭容腔,利用油液压缩性进行建压,采用LabVIEW图形化编程技术完成了液压系统的可视化动态伺服控制.在建立伺服阀、被试容腔和蓄能器数学模型的基础上,结合数字PID控制算法,完成AMESim环境下的仿真,对比分析不同容腔容积和冲击频率对系统性能的影响,得到不同条件下系统流量和阀口开度等参数的理论值,仿真结果表明伺服阀需要有额定200 L/min以上的通流能力.实际试验系统以压力等级50 MPa,通流能力230 L/min的大流量伺服阀为直接控制对象,试验高压达到50 MPa,并可无级调整,压力冲击波形周期2 Hz、区间5~42 MPa,试验曲线落在标准阴影区以内,试验结果符合预期指标,并验证了仿真分析的可靠性.

Abstract:

The cylinder and servo-valve applied to airplane hydraulic systems should be subject to periodic trapezoid-shaped pressure impact test treated as a closed chamber. A hydraulic servo control system dynamically tracking the standard impact pressure curve was developed for the test. Mathematic models of the two stage servo-valve and the being tested chamber was established, and the simulation in AMESim was accomplished using the digital PID algorithm. The flow rate and valve open area under different chamber volume and different impact frequency was studied. Maximum flow rate of the servo valve in simulation is about 250 L/min under the condition of 5-42 MPa impact pressure, 6 L chamber volume and 2 Hz impact frequency. Experiment system could be visually real-time controlled based on the LabVIEW and data acquisition card using graphic coding technology. Actual pressure curve generated by the hydraulic servo control system precisely falls into the standard area. Experiment results tally with the simulation and the system reaches the design target.

出版日期: 2015-02-01
:  TH 137  
基金资助:

国家自然科学基金资助项目(51005200)

作者简介: 张斌(1980—),男,助理研究员,从事液压元件与机电系统方面研究. E-mail: zbzju@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张斌, 邓乾坤, 王双, 杨华勇. 压力脉冲试验伺服控制系统机理分析与仿真试验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.02.012.

ZHANG Bin, DENG Qian-kun, WANG Shuang, YANG Hua-yong. Mechanism analysis, simulation and experiment study of dynamic servo control system of periodic high pressure impact. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.02.012.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.02.012        http://www.zjujournals.com/eng/CN/Y2015/V49/I2/275

[1] GJB 3849-99.飞机液压作动筒、阀、压力容器脉冲试验要求和方法[S]. 北京:国防科学技术工业委员会,1999.
GJB 3849-99.Aircraft hydraulic actuators, valves and pressure vessels impulse test requirements and methods[S]. Beijing: Commission of Science Technology and Industry for National Defense, 1999.
[2] 李军.飞机液压系统压力脉冲试验的机理分析与控制[D].西安:西北工业大学,2007: 36,40-41.
LI Jun. Analyze and control on pressure pulse test of aeroplane hydraulic system [D]. Xi’an: Northwestern Polytechnical University, 2007: 36, 40-41.
[3] 袁朝辉,马煜.基于PID神经网络的液压脉冲试验系统[J].液压与气动,2010,31(4): 86-88.
YUAN Zhao-hui, MA Yu. Hydraulic impulse test system based on pid neural networks [J]. Chinese Hydraulics & Pneumatics, 2010, 31(4): 86-88.
[4] 王双,邓乾坤,张斌.高压伺服控制脉冲试验台液压系统设计[J].液压气动与密封,2012,32(9): 21-24.
WANG Shuang, DENG Qian-kun, ZHANG Bin. The hydrauhc system design of high pressure servo-control pulse test bed [J]. Hydraulics Pneumatics & Seals, 2012, 32(9): 21-24.
[5] KAMESWARA RAO C V, ESWARAN K. Pressure transients in incompressible fluid pipeline networks [J]. Nuclear Engineering and Design, 1999, 188(1): 111.
[6] ABDUL J, GAUTHAM, REMYA S. A simplified Genetic Algorithm for online tuning of PID controller in LabVIEW[C]∥2009 World Congress on Nature & Biologically Inspired Computing. Coimbatore: IEEE, 2009: 1516-1519.
[7] 王春行.液压伺服控制系统[M].北京:机械工业出版社,1981: 142-149.
[8] VUGDELIJA M. Determination of a time step interval in hydraulic system transients simulation[J]. Advances in Engineering Software, 1999, 31 (2): 143-148.
[1] 欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1111-1118.
[2] 丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报(工学版), 2017, 51(6): 1126-1134.
[3] 张强, 魏建华, 时文卓. 采用软溢流模糊PID控制器的液压垫压边力控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1143-1152.
[4] 倪敬, 冯国栋, 王志强, 高殿荣, 许明. 内曲线式端面配流水液压马达的优化设计[J]. 浙江大学学报(工学版), 2017, 51(5): 946-953.
[5] 丁加新, 陈英龙, 周华. 水辅成型浮动芯注射对制品残余壁厚的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 937-945.
[6] 徐兵, 苏琦, 张军辉, 陆振宇. 比例放大器驱动电路特性分析及控制器设计[J]. 浙江大学学报(工学版), 2017, 51(4): 800-806.
[7] 杜睿龙, 陈英龙, 周华, 王佳. 新型高速单柱塞轴向柱塞泵配流机构[J]. 浙江大学学报(工学版), 2016, 50(10): 1902-1910.
[8] 王建森, 刘耀林, 冀宏, 王鹏飞. 非全周开口滑阀运动过程液动力数值计算[J]. 浙江大学学报(工学版), 2016, 50(10): 1922-1926.
[9] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[10] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[11] 廖湘平,龚国芳,彭雄斌,吴伟强. 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报(工学版), 2016, 50(5): 902-912.
[12] 赵鹏宇,陈英龙,周华,杨华勇. 油液混合动力挖掘机势能回收及能量管理策略[J]. 浙江大学学报(工学版), 2016, 50(5): 893-901.
[13] 赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 2016, 50(4): 650-656.
[14] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[15] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(3): 419-427.