Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1685-1692    DOI: 10.3785/j.issn.1008-973X.2022.09.001
土木工程、交通工程     
悬索桥断索动力响应有限元模型参数研究
邱文亮1(),杨浩荣1,吴广润1,2,*()
1. 大连理工大学 建设工程学部,辽宁 大连 116024
2. 聊城大学 建筑工程学院,山东 聊城 252059
Parameter study on finite element model of abrupt hanger-breakage event induced dynamic responses of suspension bridge
Wen-liang QIU1(),Hao-rong YANG1,Guang-run WU1,2,*()
1. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Architecture and Civil Engineering, Liaocheng University, Liaocheng 252059, China
 全文: PDF(1165 KB)   HTML
摘要:

采用有限元方法(FEM)建立考虑主缆局部振动影响因素的悬索桥断索动力分析模型,研究主缆局部振动对悬索桥断索动力响应的影响程度. 对主缆物理抗弯刚度、单元网格密度、索夹质量、模型阻尼比以及吊索应力初始状态等因素进行参数分析,给出提高计算结果精度的建议. 结果表明:在进行悬索桥断索动力分析时,主缆局部振动对计算结果精度具有不可忽略的影响;有限元模型中主缆物理弯曲刚度、单元网格密度和索夹质量均是影响主缆局部振动的关键参数. 结构整体模态阻尼和主缆局部阻尼均能有效抑制断索点主缆振动,分析模型须考虑局部主缆单元阻尼和结构整体模态阻尼的差异. 结构断索动力响应随着断裂吊索初始应力增大而增大,结构断索响应动力放大系数变化幅度不大.

关键词: 悬索桥断索动力响应局部振动阻尼    
Abstract:

Using the finite element method (FEM), the calculation model of suspension bridge was established to investigate hanger-breakage event induced dynamic responses considering the influence of main cable’s local vibration. The influence degree of main cable’s local vibration on structural dynamic responses of suspension bridge subjected to an abrupt hanger-breakage event was studied. A parametric study was conducted, in which the influencing factors included the physical bending stiffness of the main cable, the grid density of the element, the mass of the clamp, the damping ratio of the model and the initial state of the hanger stress. Some suggestions were given to improve the accuracy of calculation results. The influencing factors included the physical bending stiffness of the main cable, the grid density of the element, the mass of the cable clamp, the damping ratio of the model and the initial state of the hanger stress. Results show that the local vibration of the main cable has an un-neglected influence on the accuracy of the calculation results in the dynamic analysis of the cable breakage of suspension bridges. In the finite element model, the main cable physical bending stiffness, element mesh density and cable clamp mass are the key parameters affecting the local vibration of the main cable. Both the overall modal damping and the local damping of the main cable can effectively suppress the vibration of the main cable at the break point. The difference between the local main cable element damping and the overall modal damping of the structure should be taken account in the analysis model. The dynamic response of structural broken cable increases with the increase of initial stress, but the dynamic amplification coefficient of structural broken cable response changes little.

Key words: suspension bridge    hanger-breakage event    dynamic response    local vibration    damping
收稿日期: 2021-09-07 出版日期: 2022-09-28
CLC:  U 447  
基金资助: 国家自然科学基金资助项目(51778108)
通讯作者: 吴广润     E-mail: qwl@dlut.edu.cn;wuguangrun@outlook.com
作者简介: 邱文亮(1971—),男,教授,从事大跨度桥梁设计理论与多灾害作用机理研究. orcid.org/0000-0003-2859-5758. E-mail: qwl@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
邱文亮
杨浩荣
吴广润

引用本文:

邱文亮,杨浩荣,吴广润. 悬索桥断索动力响应有限元模型参数研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1685-1692.

Wen-liang QIU,Hao-rong YANG,Guang-run WU. Parameter study on finite element model of abrupt hanger-breakage event induced dynamic responses of suspension bridge. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1685-1692.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.001        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1685

图 1  等效卸载法模拟悬索桥吊索断裂
图 2  悬索桥的整体布置图
图 3  主梁细部构造图
图 4  全桥有限元空间模型
图 5  吊索断裂引起的结构动力响应时程曲线
图 6  主缆网格密度对动力放大系数的影响
图 7  索夹质量对动力放大系数的影响
图 8  主缆物理抗弯刚度对动力放大系数的影响
图 9  计算模型阻尼比的自由振动时程曲线
ξ ξB ξT ξloc
工况1) 工况2)
%
0.5 0.48 0.52 3.13 0.17
1.5 1.49 1.47 4.92 0.26
2.5 2.44 2.53 5.94 0.32
表 1  未修正模型的结构模态阻尼比与主缆局部振动阻尼比
ξ ξB ξT ξloc
工况1) 工况2)
%
0.5 0.52 0.53 5.31 2.5
1.5 1.51 1.51 6.27 2.5
2.5 2.51 2.55 7.17 2.5
0.5 0.54 0.53 6.73 5.0
1.5 1.55 1.57 8.04 5.0
2.5 2.57 2.59 9.03 5.0
表 2  修正模型的结构模态阻尼比与主缆局部振动阻尼比
图 10  结构模态阻尼比和主缆局部振动阻尼比对断索响应动力放大系数的影响
σ0,23a/ Mpa σ0,24a/MPa σmax,24a/Mpa ησ M0/(MN·m) Mmax/(MN·m) ηM T0/(MN·m) Tmax/(MN·m) ηT
204 511 707 2.45 3.78 5.63 1.60 8.65 16.27 1.70
305 457 782 2.43 2.24 6.51 1.58 4.32 19.19 1.69
407 406 844 2.37 0.57 7.45 1.58 0.00 21.94 1.67
509 360 916 2.41 ?1.08 8.33 1.56 4.34 25.33 1.70
611 320 966 2.39 ?2.76 9.26 1.56 8.54 28.61 1.71
712 277 1020 2.37 ?4.41 10.19 1.56 12.81 31.63 1.71
814 231 1072 2.34 ?6.06 11.09 1.56 17.28 34.57 1.71
表 3  吊索初始状态对断索响应的影响
1 KAWAI Y, SIRINGORINGO D, FUJINO Y Failure analysis of the hanger clamps of the Kutai-Kartanegara Bridge from the fracture mechanics viewpoint[J]. Journal of JSCE, 2014, 2: 1- 6
doi: 10.2208/journalofjsce.2.1_1
2 Recommendations for stay cable design, testing and installation: PTI DC45.1-12[S]. Phoenix: [s.n.], 2012.
3 SHAO  G,  JIN  H,  JIANG  R,  et  al. Dynamic  response  and robustness evaluation of cable-supported arch bridges subjected to  cable  breaking[J]. Shock and Vibration, 2021, 2021: 6689630
4 沈锐利, 房凯, 官快 单根吊索断裂时自锚式悬索桥强健性分析[J]. 桥梁建设, 2014, 44 (6): 35- 39
SHEN Rui-li, FANG Kai, GUAN Kuai Robustness analysis of self-anchored suspension bridge with loss of a single sling[J]. Bridge Construction, 2014, 44 (6): 35- 39
5 吴庆雄, 余印根, 陈宝春 下承式钢管混凝土刚架系杆拱桥吊杆断裂动力分析[J]. 振动与冲击, 2014, 33 (15): 144- 149
WU Qing-xiong, YU Yin-gen, CHEN Bao-chun Dynamic analysis for cable loss of a rigid-frame tied through concrete-filled steel tubular arch bridge[J]. Journal of Vibration and Shock, 2014, 33 (15): 144- 149
6 张羽, 方志, 卢江波, 等 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击, 2021, 40 (5): 237- 246
ZHANG Yu, FANG Zhi, LU Jiang-bo, et al Broken cable- induced dynamic response of long-span concrete cable stayed bridge during construction[J]. Journal of Vibration and Shock, 2021, 40 (5): 237- 246
7 RUIZ-TERAN A M, APARICIO A C Response of under-deck cable-stayed bridges to the accidental breakage of stay cables[J]. Engineering Structures, 2009, 31 (7): 1425- 1434
doi: 10.1016/j.engstruct.2009.02.027
8 ZHOU Y, CHEN S Numerical investigation of cable breakage events on long-span cable-stayed bridges under stochastic traffic and wind[J]. Engineering Structures, 2015, 105: 299- 315
doi: 10.1016/j.engstruct.2015.07.009
9 邱文亮, 吴广润 悬索桥吊索断索动力响应分析的有限元模拟方法研究[J]. 湖南大学学报: 自然科学版, 2021, 48 (11): 22- 30
QIU Wen-liang, WU Guang-run Research on simulation method of dynamic response analysis of suspension bridges subjected to hanger-breakage events[J]. Journal of Hunan University: Natural Sciences, 2021, 48 (11): 22- 30
10 沈国辉, 孙炳楠, 叶尹, 等 高压输电塔的断线分析和断线张力计算[J]. 浙江大学学报:工学版, 2011, 45 (4): 678- 683
SHEN Guo-hui, SUN Bing-nan, YE Yin, et al Broken wire analysis and broken wire load calculation of high voltage transmission tower[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (4): 678- 683
11 XIANG Y, CHEN Z, BAI B, et al Mechanical behaviors and experimental study of submerged floating tunnel subjected to local anchor-cable failure[J]. Engineering Structures, 2020, 212: 110521
doi: 10.1016/j.engstruct.2020.110521
12 中交公路规划设计院有限公司. 公路悬索桥设计规范: JTG/T D65-05-2015[S]. 北京: 人民交通出版社, 2015.
13 刘弋. 缆索承重桥梁结构模态阻尼的理论模型、识别方法和统计特征[D]. 上海: 同济大学, 2014.
LIU Yi. Theoretical model, identification method and statistical characteristics of modal damping of cable bearing bridge structure [D]. Shanghai: Tongji University, 2014.
14 严琨, 沈锐利 基于细长梁单元的悬索桥主缆线形分析[J]. 计算力学学报, 2016, 33 (3): 381- 387
YAN Kun, SHEN Rui-li Study on main cable shape of suspension bridge based on slender beam element[J]. Chinese Journal of Computational Mechanics, 2016, 33 (3): 381- 387
15 李晓章, 谢旭, 张鹤 桥梁拉索用CFRP线材阻尼特性试验研究和理论分析[J]. 工程力学, 2015, 32 (1): 176- 183
LI Xiao-zhang, XIE Xu, ZHANG He Experimental and theoretical studies on the damping properties of CFRP wire used in bridge cables[J]. Engineering mechanics, 2015, 32 (1): 176- 183
16 谢旭, 中村一史, 前田研一, 等 CFRP拉索阻尼特性实验研究和理论分析[J]. 工程力学, 2010, 27 (3): 205- 211
XIE Xu, NAKAMURA Hitoshi, MAEDA Kenyichi, et al Theoretical analysis and experimental test on damping characteristics of CFRP stay cables[J]. Engineering Mechanics, 2010, 27 (3): 205- 211
[1] 黄一文,蒋楠,周传波,李海波,罗学东,姚颖康. 内壁腐蚀混凝土管道爆破动力失效机制[J]. 浙江大学学报(工学版), 2022, 56(7): 1342-1352.
[2] 王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.
[3] 王威,宋鸿来,权超超,李昱,甄国凯,赵昊田. 横波钢板混凝土剪力墙震损修复及抗侧刚度分析[J]. 浙江大学学报(工学版), 2021, 55(9): 1694-1704.
[4] 凌道盛,盛文军,黄博,赵云. 道面单向约束作用对飞机振动响应的影响[J]. 浙江大学学报(工学版), 2021, 55(9): 1684-1693.
[5] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[6] 张孝良,耿灿,聂佳梅,高乔. 液力忆惯容器装置建模与特性试验[J]. 浙江大学学报(工学版), 2021, 55(3): 430-440.
[7] 唐剑明,谢旭. 横风作用下大跨度人行悬索桥振动使用性研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1903-1911.
[8] 李阳健,何伟,刘宏伟,李伟,林勇刚,顾亚京. 水平轴海流能机组传动链主动阻尼控制技术[J]. 浙江大学学报(工学版), 2020, 54(7): 1355-1361.
[9] 庄心善,赵汉文,王俊翔,黄勇杰. 合肥膨胀土动弹性模量与阻尼比试验研究[J]. 浙江大学学报(工学版), 2020, 54(4): 759-766.
[10] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[11] 赵俭斌,席义博,王振宇. 海上风机单桩基础疲劳损伤计算方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1711-1719.
[12] 童水光,苗嘉智,童哲铭,何顺,相曙锋,帅向辉. 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报(工学版), 2019, 53(9): 1637-1646.
[13] 周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.
[14] 乔卫亮,马来好,封星,孙玉清. 含透空结构浮体的微幅振荡辐射特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1423-1430.
[15] 张程,金涛,李培强,邓慧琼. 采用多目标蝙蝠算法的电力系统广域协调控制策略[J]. 浙江大学学报(工学版), 2019, 53(3): 589-597.