计算机与信息工程 |
|
|
|
|
基于多尺度条件生成对抗网络血细胞图像分类检测方法 |
陈雪云1( ),黄小巧1,谢丽2 |
1. 广西大学 电气工程学院,广西 南宁 530004 2. 广西医科大学第二附属医院 医学检验科,广西 南宁 530007 |
|
Classification and detection method of blood cells images based on multi-scale conditional generative adversarial network |
Xue-yun CHEN1( ),Xiao-qiao HUANG1,Li XIE2 |
1. School of Electrical Engineering, Guangxi University, Nanning 530004, China 2. Department of Clinical Laboratory, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China |
1 |
王亚品, 曹益平, 付光凯, 等 基于深度卷积神经网络的人体外周血白细胞显微图像分类[J]. 光电子·激光, 2019, 30 (5): 546- 555 WANG Ya-pin, CAO Yi-ping, FU Guang-kai, et al Human peripheral blood leukocyte microscopic image classification based on deep convolutional neural network[J]. Journal of Optoelectronics·Laser, 2019, 30 (5): 546- 555
|
2 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
3 |
LIU W, ANGUELOY D, ERHAN D, et al. SSD: single shot multibox detector[C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37.
|
4 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
5 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2017: 6517-6525.
|
6 |
REDMON J, FARHADI A. YOLOV3: an incremental improvement [EB/OL]. (2018-4-10) [2020-8-18]. https://arxiv.org/pdf/1804.02767.pdf.
|
7 |
徐晓涛, 孙亚东, 章军 基于YOLO框架的血细胞自动计数研究[J]. 计算机工程与应用, 2020, 56 (14): 98- 103 XU Xiao-tao, SUN Ya-dong, ZHANG Jun Automated counting of blood cells based on YOLO framework[J]. Computer Engineering and Applications, 2020, 56 (14): 98- 103
doi: 10.3778/j.issn.1002-8331.1904-0268
|
8 |
刘树杰. 基于卷积神经网络的红细胞检测和计数方法[D]. 广州: 华南理工大学, 2017: 40-57. LIU Shu-jie. Red blood cell detection and counting based on convolutional neural network[D]. Guangzhou: South China University of Technology, 2017: 40-57.
|
9 |
HILAL T, KIM G S, KIL T C, et al Vehicle detection and counting in high-resolution aerial images using convolutional regression neural network[J]. IEEE Access, 2017, 11 (6): 2220- 2230
|
10 |
CHEN X, LIN J, XIANG S, et al Detecting maneuvering target accurately based on a two-phase approach from remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (5): 849- 853
doi: 10.1109/LGRS.2019.2935230
|
11 |
GOODFELLOW I J, POUGET A J, MIRZA M, et al Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3: 2672- 2680
|
12 |
CUI Y R, LIU Q, GAO C Y, et al FashionGAN: display your fashion design using conditional generative adversarial nets[J]. Computer Graphics Forum, 2018, 37 (7): 345- 359
|
13 |
ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii: IEEE, 2017: 1125-1134.
|
14 |
RONNEBRGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241.
|
15 |
PRATT H, WILLIAMS B, COENEN F, et al. FCNN: Fourier convolutional neural networks[C]// Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2017: 786-798.
|
16 |
赖小波, 许茂盛, 徐小媚 多分类CNN的胶质母细胞瘤多模态MR图像分割[J]. 电子学报, 2019, 47 (8): 1738- 1747 LAI Xiao-bo, XU Mao-sheng, XU Xiao-mei Glioblastoma multiforme multi-modal MR image segmentation using multi-class CNN[J]. Acta Electronica Sinica, 2019, 47 (8): 1738- 1747
doi: 10.3969/j.issn.0372-2112.2019.08.018
|
17 |
段然, 周登文, 赵丽娟, 等 基于多尺度特征映射网络的图像超分辨率重建[J]. 浙江大学学报: 工学版, 2019, 53 (7): 1331- 1339 DUAN Ran, ZHOU Deng-wen, ZHAO Li-juan, et al Image super-resolution reconstruction based on multi-scale feature mapping network[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1331- 1339
|
18 |
王成凯, 杨晓敏, 严斌宇 基于随机森林的红外图像超分辨力算法[J]. 太赫兹科学与电子信息学报, 2020, 18 (4): 665- 671 WANG Cheng-kai, YANG Xiao-min, YAN Bin-yu Infrared image super-resolution algorithm based on random forest[J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18 (4): 665- 671
doi: 10.11805/TKYDA2019139
|
19 |
胡麟苗, 张湧 基于生成对抗网络的短波红外−可见光人脸图像翻译[J]. 光学学报, 2020, 40 (5): 75- 84 HU Lin-miao, ZHANG Yong Facial image translation in short-wavelength infrared and visible light based on generative adversarial network[J]. Acta Optica Sinica, 2020, 40 (5): 75- 84
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|