Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 495-503    DOI: 10.3785/j.issn.1008-973X.2026.03.005
交通工程、土木工程     
砂土地基中吸力桶基础的复合承载特性
陈政宇1,2(),张陈蓉1,2,*(),时振昊1,2,郝宸1,2
1. 同济大学 地下建筑与工程系,上海 200092
2. 同济大学 岩土及地下工程教育部重点实验室,上海 200092
Combined bearing behavior of suction bucket foundation in sand
Zhengyu CHEN1,2(),Chenrong ZHANG1,2,*(),Zhenhao SHI1,2,Chen HAO1,2
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
 全文: PDF(1619 KB)   HTML
摘要:

针对砂土地基中海上风机吸力桶基础的复合承载问题开展研究. 采用状态相关砂土弹塑性模型,基于ABAQUS有限元软件UMAT子程序开展数值模拟. 通过土单元试验的模拟,验证了模型的合理性. 对砂土中吸力桶基础的承载特性进行模拟,将计算结果与遵循Mohr-Coulomb屈服准则理想弹塑性土体模型(MC模型)的计算结果进行对比,分析砂土中吸力桶基础复合加载下破坏包络面的区别. 结果表明,砂土状态相关的模型能够合理地反映吸力桶基础的承载特性,采用MC模型得到的吸力桶基础在二维及三维荷载空间的复合承载性能在大部分情况下更保守. 吸力桶基础在三维荷载组合作用下,在桶顶施加一定的竖向荷载有利于提高基础的水平-力矩复合承载力,但效果有限.

关键词: 砂土吸力桶基础状态相关模型砂土模型    
Abstract:

The combined bearing capacity of suction bucket foundations for offshore wind turbines in sandy soil was analyzed. A state-dependent elastoplastic model for sand was employed, and numerical simulations were conducted by using the UMAT subroutine in ABAQUS finite element software. The model’s validity was verified through simulations of soil element tests. Simulations were performed on the bearing behavior of suction bucket foundations in sandy soil. The computation results were compared with those obtained from an ideal elastic-plastic soil model following the Mohr-Coulomb yield criterion (MC model). Differences in the failure envelope surfaces under combined loading of the suction bucket foundation in sand were analyzed. Results show that the state-dependent sand model can reasonably reflect the bearing characteristics of the suction bucket foundation. The combined bearing capacity of the suction bucket foundation in two-dimensional and three-dimensional load spaces, which is obtained using the MC model, is generally more conservative in most cases. Applying a certain vertical load at the top of the bucket can improve the horizontal-moment composite bearing capacity of the foundation under three-dimensional combined loading, but the effect is limited.

Key words: sand    suction bucket foundation    state-dependent model    sand model
收稿日期: 2025-05-20 出版日期: 2026-02-04
:  TM 614  
基金资助: 国家自然科学基金资助项目(51779175).
通讯作者: 张陈蓉     E-mail: 2232578@tongji.edu.cn;zcrong33@tongji.edu.cn
作者简介: 陈政宇(2001—),男,硕士生,从事岩土工程的研究. orcid.org/0009-0001-9550-0897. E-mail:2232578@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈政宇
张陈蓉
时振昊
郝宸

引用本文:

陈政宇,张陈蓉,时振昊,郝宸. 砂土地基中吸力桶基础的复合承载特性[J]. 浙江大学学报(工学版), 2026, 60(3): 495-503.

Zhengyu CHEN,Chenrong ZHANG,Zhenhao SHI,Chen HAO. Combined bearing behavior of suction bucket foundation in sand. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 495-503.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.005        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/495

图 1  临界状态线与状态参数
参数数值参数数值
$ {G}_{{\mathrm{e}}}^{{\mathrm{ref}}} $/MPa125ξ0.7
v0.05d00.88
$ {M}_{{\mathrm{c}}} $1.25m3.5
$ {M}_{{\mathrm{e}}} $0.9375h13.15
$ {e}_{\Gamma} $0.934h23.05
λ0.019n1.1
表 1  状态相关砂土模型的参数
图 2  不排水三轴试验结果的对比
弹性参数摩擦角剪胀角其他参数
E1 = 86.54 MPaφ1 = 32.38°θ1 = 5.13°φc = 31.15°
E2 = 117.60 MPaφ2 = 32.04°θ2 = 4.09°c = 0.1 kPa
E3 = 142.02 MPaφ3 = 31.78°θ3 = 3.19°e0 = 0.833
E4 = 162.82 MPaφ4 = 31.56°θ4 = 2.37°emin = 0.597
E5 = 181.24 MPaφ5 = 31.39°θ5 = 1.61°emax = 0.977
ν = 0.05
ρ = 2.446
表 2  MC砂土模型的参数(Dr = 37.9%)
弹性参数摩擦角剪胀角其他参数
E1 = 100.01 MPaφ1 = 35.20°θ1 = 11.99°φc = 31.15°
E2 = 135.90 MPaφ2 = 34.71°θ2 = 10.95°c = 0.1
E3 = 164.12 MPaφ3 = 34.31°θ3 = 10.05°e0 = 0.735
E4 = 188.15 MPaφ4 = 33.96°θ4 = 9.23°emin = 0.597
E5 = 209.45 MPaφ5 = 33.64°θ5 = 8.47°emax = 0.977
ν = 0.05
ρ = 2.446
表 3  MC砂土模型的参数(Dr = 63.7%)
图 3  网格、地应力平衡与网格无关性的验证
图 4  力矩-转角曲线的对比(Dr = 60%)
图 5  荷载-位移曲线的对比
图 6  水平极限荷载下的应力云图(Dr = 37.9%)
图 7  切线相交法
图 8  V-H平面内无量纲化破坏包络线的对比
图 9  V-M平面内无量纲化破坏包络线的对比
图 10  H-M平面内无量纲化破坏包络线的对比
图 11  V对基础H-M破坏包络面的影响(V≤0.5Vult)
图 12  V-H-M荷载作用下吸力桶基础的破坏包络面(V≤0.5Vult)
1 许维凯 海上风电发展趋势分析与探讨[J]. 资源节约与环保, 2023, (1): 140- 143
XU Weikai Analysis and discussion on the development trend of offshore wind power[J]. Resource Conservation and Environmental Protection, 2023, (1): 140- 143
2 毋晓妮, 廖倩, 李晔 海上风机吸力式桶形基础承载特性研究综述[J]. 海洋技术学报, 2020, 39 (1): 91- 106
WU Xiaoni, LIAO Qian, LI Ye Review on bearing characteristics of suction bucket foundations for offshore wind turbines[J]. Journal of Ocean Technology, 2020, 39 (1): 91- 106
3 张东明, 陈守祥, 郑淼, 等 海上风机吸力桶基础的应用和技术分析[J]. 中国水运(下半月), 2023, 23 (11): 133- 135
ZHANG Dongming, CHEN Shouxiang, ZHENG Miao, et al Application and technical analysis of suction caisson foundations for offshore wind turbines[J]. China Water Transport (Second Half), 2023, 23 (11): 133- 135
4 PARK J S, PARK D Vertical bearing capacity of bucket foundation in sand overlying clay[J]. Ocean Engineering, 2017, 134: 62- 76
doi: 10.1016/j.oceaneng.2017.02.015
5 范夏玲 海上风电吸力桩基础破坏包络面理论研究[J]. 能源与环境, 2023, (6): 60- 62
FAN Xialing Theoretical research on failure envelope surface of offshore wind power suction pile foundation[J]. Energy and Environment, 2023, (6): 60- 62
6 GOURVENEC S, RANDOLPH M Effect of strength non-homogeneity on the shape of failure envelopes for combined loading of strip and circular foundations on clay[J]. Géotechnique, 2003, 53 (6): 575- 586
7 范庆来, 郑静, 武科 砂土地基上条形浅基础破坏包络面[J]. 应用基础与工程科学学报, 2015, 23 (4): 773- 781
FAN Qinglai, ZHENG Jing, WU Ke Failure envelope of strip shallow footings on sand[J]. Journal of Basic Science and Engineering, 2015, 23 (4): 773- 781
8 汤振, 罗强, 贾虎 砂土地基条形浅基础在倾斜荷载下的破坏包络面[J]. 人民长江, 2018, 49 (Suppl.2): 291- 293
TANG Zhen, LUO Qiang, JIA Hu Failure envelope of strip shallow footings on sand under inclined load[J]. Yangtze River, 2018, 49 (Suppl.2): 291- 293
9 张雨坤, 王冲冲, 李大勇, 等 砂土中裙式吸力基础复合承载特性数值模拟[J]. 科学技术与工程, 2021, 21 (4): 1515- 1521
ZHANG Yukun, WANG Chongchong, LI Dayong, et al Numerical simulation of bearing characteristics of modified suction caissons in sand under combined loads[J]. Science Technology and Engineering, 2021, 21 (4): 1515- 1521
10 ZHANG Y, BIENEN B, CASSIDY M J, et al The undrained bearing capacity of a spudcan foundation under combined loading in soft clay[J]. Marine Structures, 2011, 24 (4): 459- 477
11 BOLTON M D The strength and dilatancy of sands[J]. Geotechnique, 1986, 36 (1): 65- 78
12 MANZARI M T, DAFALIAS Y F A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47 (2): 255- 272
13 YANG J, LUO X D Exploring the relationship between critical state and particle shape for granular materials[J]. Journal of the Mechanics and Physics of Solids, 2015, 84: 196- 213
doi: 10.1016/j.jmps.2015.08.001
14 GUO N, ZHAO J The signature of shear-induced anisotropy in granular media[J]. Computers and Geotechnics, 2013, 47: 1- 15
doi: 10.1016/j.compgeo.2012.07.002
15 FU S, YANG Z X, ASCE M, et al Large-deformation finite-element simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2023, 149 (6): 04023038
doi: 10.1061/JGGEFK.GTENG-10480
16 DOŁŻYK-SZYPCIO K. Stress-strain behaviour of Toyoura sand in undrained triaxial compression [C]// 7th International Symposium on Deformation Characteristics of Geomaterials. Glasgow: [s. n.], 2019: 15010.
17 王子珺, 赵伯明 砂土统一本构模型研究及其三维数值实现[J]. 工程力学, 2021, 38 (10): 181- 187
WANG Zijun, ZHAO Boming Research on unified constitutive model of sand and its three-dimensional numerical implementation[J]. Engineering Mechanics, 2021, 38 (10): 181- 187
18 BEEN K, JEFFERIES M G A state parameter for sands[J]. Géotechnique, 1985, 35 (2): 99- 112
19 MANZANAL D, FERNÁNDEZ MERODO J A, PASTOR M Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part 1: saturated state[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35 (12): 1347- 1362
doi: 10.1002/nag.961
20 PIETRUSZCZAK S, STOLLE D Modeling of sand behavior under earthquake excitation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11: 221- 240
doi: 10.1002/nag.1610110302
21 陈洲泉, 黄茂松 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40 (2): 243- 251
CHEN Zhouquan, HUANG Maosong Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Journal of Geotechnical Engineering, 2018, 40 (2): 243- 251
22 SHI Z. Numerical modelling of cyclic degradation of natural clay [D]. Evanston: Northwestern University, 2016.
23 VERDUGO R, ISHIHARA K The steady state of sands[J]. Soils and Foundations, 1996, 36 (2): 81- 91
doi: 10.3208/sandf.36.2_81
24 LI X S, DAFALIAS Y F Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50 (4): 449- 460
25 张雁鹏. 海上风电四吸力筒导管架基础承载性能数值研究[D]. 大连: 大连海洋大学, 2024.
ZHANG Yanpeng. Numerical study on bearing performance of quadruple suction caisson jacket foundation for offshore wind turbines [D]. Dalian: Dalian Ocean University, 2024.
26 童森杰, 黄茂松, 时振昊, 等 基于初始状态参数的砂土峰值摩擦角和极限强度[J]. 岩石力学与工程学报, 2022, 41 (2): 389- 398
TONG Senjie, HUANG Maosong, SHI Zhenhao, et al Peak frictional angle and ultimate drainage strength of sand based on initial state parameter[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (2): 389- 398
27 王欢. 砂土海床大直径单桩基础和桶形基础水平受荷特性研究[D]. 杭州: 浙江大学, 2020.
WANG Huan. Study on lateral load-bearing behavior of large-diameter monopile and bucket foundations in sandy seabed [D]. Hangzhou: Zhejiang University, 2020.
28 崔希君, 史永晋, 魏羲, 等 复合加载模式下四筒导管架基础承载特性分析[J]. 太阳能学报, 2024, 45 (6): 581- 588
CUI Xijun, SHI Yongjin, WEI Xi, et al Analysis of bearing characteristics of four-bucket jacket foundation in combined loading mode[J]. Acta Energiae Solaris Sinica, 2024, 45 (6): 581- 588
29 姜明涛. 砂土中海上风电机组四筒导管架基础承载特性研究[D]. 天津: 天津大学, 2019.
JIANG Mingtao. Study on bearing characteristics of four-bucket jacket foundation for offshore wind turbine in sand [D]. Tianjin: Tianjin University, 2019.
30 王伟臣. 吸力式三桶导管架基础在黏土中承载特性研究[D]. 天津: 天津大学, 2022.
WANG Weichen. Study on characteristics of geotechnical capacities for tripod suction buckets foundations in clay [D]. Tianjin: Tianjin University, 2022.
[1] 徐瑞麟,易恩泽,吴君涛,王奎华,张智卿,汤旅军. 考虑桩-筒变形协调的钢护筒-碎石复合桩水平承载力计算理论[J]. 浙江大学学报(工学版), 2026, 60(2): 445-454.
[2] 江钇垚,陈延博,卞怡,徐文杰,詹良通,柯瀚,王清扬. 脲酶诱导矿化对铅、镉复合污染砂土固化 修复的试验研究[J]. 浙江大学学报(工学版), 2025, 59(2): 332-341.
[3] 曹卫平,夏冰,葛欣. 水平受荷斜桩双曲线型p-y曲线的构建及其应用[J]. 浙江大学学报(工学版), 2019, 53(10): 1946-1954.
[4] 梁孟根, 梁甜, 陈云敏. 自由场地液化响应特性的离心机振动台试验[J]. J4, 2013, 47(10): 1805-1814.
[5] 徐日庆,张俊,朱剑锋, 王兴陈. 考虑扰动影响的修正Duncan-Chang模型[J]. J4, 2012, 46(1): 1-7.
[6] 朱剑锋, 徐日庆, 秦艳华. 基于SMP准则改进Lade-Duncan模型[J]. J4, 2011, 45(10): 1884-1888.
[7] 徐日庆, 李昕睿, 朱剑锋. 刚性挡土墙平动模式下中间被动土压力的计算[J]. J4, 2010, 44(10): 2005-2009.