Please wait a minute...
J4  2013, Vol. 47 Issue (10): 1805-1814    DOI: 10.3785/j.issn.1008-973X.2013.10.016
土木工程     
自由场地液化响应特性的离心机振动台试验
梁孟根, 梁甜, 陈云敏
浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310027
Centrifuge shaking table modeling of liquefaction characteristics of free field
LIANG Meng-gen, LIANG Tian, CHEN Yun-min
MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

利用ZJU-400土工离心机振动台,对相对密度为40%的福建中细砂自由场地模型,进行5次动态加载的液化试验.分析试验中土的动力特性和地震动特性,得到土体不同深度范围内加速度、超静孔隙水压力随时间的发展规律,以及土体加速度、沉降与超静孔隙水压力增长之间的关系,增强了对地震过程中土体加速度、沉降与孔隙水之间相互作用的理解.结果表明:场地放大作用受超静孔隙水压力增长和土体软化的共同作用,液化破坏了土颗粒的联结强度和结构稳定性,再次沉积形成的结构不稳定易再次液化|峰值过后切应力对超静孔隙水压力增长仍起到不可忽视的作用;土体超静孔隙水压力增长和土体沉降是外荷由土颗粒到孔隙水再到土颗粒传递的结果|液化后固结完成,场地土体自振频率增加;基于剪切波速确定CRR曲线的方法是合理的.

Abstract:

A free-field model whose relative density is 40% with Fujian sand was constructed, and five dynamic loading liquefaction tests were performed in ZJU-400 geotechnical centrifuge shaking table. By analyzing dynamic soil features and seismic motion character in the tests, the development and variation rules of acceleration, excess pore-water pressure (EPWP) with time were obtained at different soil depth for a few of seismic vibrations, as well as the relationship between soil acceleration, settlement and EPWP increasing, which help improving our comprehension of interaction of soil acceleration, settlement and pore-water during earthquake. Results are as follows: the site amplification depends on a combination of soil softening and EPWP increasing; liquefaction destroys connection strength and structural stability of soil grain, and resedimentation soil fabric isn’t stable and is easy to liquefy again; effect of shear stress after peak on EPWP increasing can’t be neglected; EPWP increasing and soil settlement is result of external load shift from soil grain to pore-water, and then to soil grain; site soil natural frequency increases when consolidation is finished after liquefaction; it’s reasonable to determine cyclic resistance ratio (CRR) curve based on shear wave.

出版日期: 2013-10-01
:  TU 443  
基金资助:

国家自然科学基金资助项目(50908207)|国家“973”重点基础研究发展规划资助项目(2007CB714203).

通讯作者: 陈云敏,男,教授,博导.     E-mail: chenyunmin@zju.edu.cn
作者简介: 梁孟根(1986—),男,硕士生,从事岩土地震工程和土动力学的研究.E-mai:0501010208@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

梁孟根, 梁甜, 陈云敏. 自由场地液化响应特性的离心机振动台试验[J]. J4, 2013, 47(10): 1805-1814.

LIANG Meng-gen, LIANG Tian, CHEN Yun-min. Centrifuge shaking table modeling of liquefaction characteristics of free field. J4, 2013, 47(10): 1805-1814.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.10.016        http://www.zjujournals.com/eng/CN/Y2013/V47/I10/1805

[1] 刘晶波,刘祥庆,王宗刚,等.砂土地基自由场动力离心模型试验研究[J/OL]. \
[2012-04-20\]. http:∥d.g.wanfangdata.com.cn/Conference_7033598.aspx. 2008-10-04/2012-04-20.

LIU Jing-bo, LIU Xiang-qing, WANG Zong-gang, et al. Dynamic centrifuge model test research of sand free-field [J/OL]. \
[2012-04-20\]. http:∥d.g.wanfangdata.com.cn/Conference_7033598.aspx. 2008-10-04/2012-04-20.

[2] 刘晶波,刘祥庆,王宗刚.离心机振动台试验叠环式模型箱边界效应[J].北京工业大学学报,2008, 34(9): 931-937.

LIU Jing-bo, LIU Xiang-qing, WANG Zong-gang. Boundary effect of laminar model box for shaking table tests on geotechnical centrifuge system [J]. Journal of Beijing University of Technology, 2008, 34(9): 931-937.

[3] 苏栋,李相菘.砂土自由场地震响应的离心机试验研究 [J].地震工程与工程振动,2006,26(2): 166-170.

SU Dong, LI Xiang-song. Centrifuge modeling of seismic response of free sand ground [J]. Earthquake Engineering and Engineering Vibration, 2006, 26(2): 166-170.

[4] 苏栋,李相菘.地震历史对砂土抗液化性能影响的试验研究 [J].岩土力学,2006, 27(10):1815-1818.

SU Dong, LI Xiang-song. Centrifuge investigation on effect of seismic history on resistance of sand to liquefaction [J]. Rock and Soil Mechanics, 2006, 27(10): 1815-1818.

[5] 章为民,日下部治.砂性地层地震反应离心模型试验研究 [J].岩土工程学报,2001, 23(1): 28-31.

ZHANG Wei-min, KUSAKBE O. Dynamic centrifuge model test of sandy layer [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 28-31.

[6] 曹杰,韩黎明,冯昌明,等.软弱土层自由场动力离心模型试验 [J].长江科学院院报,2012, 29(2): 78-82.

CAO Jie, HAN Li-ming, FENG Chang-ming, et al. Dynamic centrifuge tests on free-field response of soft soil [J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(2): 78-82.

[7] ELGAMAL A, YANG Zhao-hui, LAI Tao, et al. Dynamic response of saturated dense sand in laminated centrifuge container [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 598-609.

[8] TABOADA-URTUZUASTEGUI V M, DOBRY R. Centrifuge modeling of earthquake-induced lateral spreading in sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1195-1206.

[9] BYRNE P M, PARK S S, BEATY M, et al. Numerical modeling of liquefaction and comparison with centrifuge tests [J]. Canadian Geotechnical Journal, 2004, 41(2): 193-211.

[10] ZEGHAL M, ELGAMAL A, ZENG Xiang-wu, et al. Mechanism of liquefaction response in sand-silt dynamic centrifuge tests [J]. Soil Dynamics and Earthquake Engineering, 1999, 18(1): 71-85.

[11] 陈云敏,韩超,凌道盛,等.ZJU400离心机研制及其振动台性能评价 [J].岩土工程学报,2011, 33(12): 1887-1894.

CHEN Yun-min, HAN Chao, LING Dao-sheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894.

[12] YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.

[13] 韩超,周燕国,凌道盛,等.液化判别应力折减系数分布特征研究 [J].岩石力学与工程学报,2010,29(9): 1833-1839.

HAN Chao, ZHOU Yan-guo, LING Dao-sheng, et al. Study of distribution features of stress reduction coefficient in liquefaction evaluation [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1833-1839.

[14] 汪轩.瞬态振动法测地基土密实度 [J].安徽建筑工业学院学报:自然科学版,2010,18(6): 8-10.

WANG Xuan. Determination of soil compactness tested by instant vibration method [J]. Journal of Anhui Institute of Architecture and Industry: Natural Science Edition, 2010, 18(6): 8-10.

[15] ZHOU Yan-guo, CHEN Yun-min, SHAMOTO Y. Verification of the soil-type specific correlation between liquefaction resistance and shear wave velocity of sand by dynamic centrifuge test [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 165-177.

[16] 周燕国.土结构性的剪切波速表征及对动力特性的影响[D].杭州:浙江大学,2007: 97-117.

ZHOU Yan-guo. Shear wave velocity-based characterization of soil structure and its effects on dynamic behavior [D]. Hangzhou: Zhejiang University, 2007: 97-117.

[17] SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential [J]. Journal of the Soil Mechanics and Foundation Division, 1971, 97(SM9): 1249-1273.

[18] LIAO S S C, WHITMAN R V. Overburden correction factors for SPT in sands [J]. Journal of the Geotechnical Engineering Divisions, 1986, 112(3): 373-377.

[1] 郭林, 蔡袁强, 谷川, 王军. 循环荷载下软黏土回弹和累积变形特性[J]. J4, 2013, 47(12): 2111-2117.
[2] 韩同春, 豆红强, 马世国, 王福建. 考虑雨水重分布对均质无限长边坡稳定性的研究[J]. J4, 2013, 47(10): 1824-1829.
[3] 陈卓,周建,温晓贵,陶燕丽. 电极反转对电渗加固效果的试验研究[J]. J4, 2013, 47(9): 1579-1584.
[4] 吴永,裴向军,何思明,李新坡. 降雨型泥石流对沟床侵蚀的水力学机理[J]. J4, 2013, 47(9): 1585-1592.
[5] 蔡袁强,刘新峰,郭林,孙宏磊,曹志刚. 飞机荷载作用下超载预压软土地基的长期沉降[J]. J4, 2013, 47(7): 1157-1163.
[6] 吴世明, 王湛, 王立忠. 大断面过江隧道运营期受力变形健康监测分析[J]. J4, 2013, 47(4): 595-601.
[7] 吴有霞, 王湛, 钟润辉, 李玲玲, 冯智宏, 王起. 软基煤场堆载挡风墙桩基桩土共同作用分析[J]. J4, 2013, 47(3): 502-507.
[8] 林存刚, 张忠苗, 吴世明, 崔迎辉. 基于极限拉应变法的盾构掘进注浆隆起
对上覆结构的影响
[J]. J4, 2012, 46(12): 2215-2223.
[9] 徐长节,李碧青,蔡袁强. 自平衡法试桩的承载特性试验研究[J]. J4, 2012, 46(7): 1262-1268.
[10] 胡安峰,黄杰卿,谢新宇,吴健,李金柱,刘开富. 考虑自重影响的饱和土体一维复杂非线性固结研究[J]. J4, 2012, 46(3): 441-447.
[11] 韩同春,黄福明. 双层结构土质边坡降雨入渗过程及稳定性分析[J]. J4, 2012, 46(1): 39-45.
[12] 李仁民, 刘松玉, 方磊, 杜延军. 采用随机生长四参数生成法构造黏土微观结构[J]. J4, 2010, 44(10): 1897-1901.
[13] 孙德安, 陈立文, 甄文战. 平面应变条件下水土耦合超固结黏土分叉分析[J]. J4, 2010, 44(10): 1938-1943.