Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (12): 2616-2626    DOI: 10.3785/j.issn.1008-973X.2025.12.016
交通工程、土木工程     
考虑力学成因的高心墙坝变形解耦及参数反演
周雄雄1,2,3(),何秋江1,2,何纪春1,2,周璟1,2
1. 西北农林科技大学 旱区农业水土工程教育部重点实验室,陕西 咸阳 712100
2. 西北农林科技大学 水利与建筑工程学院,陕西 咸阳 712100
3. 陕西省水利电力勘测设计研究院,陕西 西安 710000
Deformation decoupling and parameter inversion for high core wall dams considering mechanical causes
Xiongxiong ZHOU1,2,3(),Qiujiang HE1,2,Jichun HE1,2,Jing ZHOU1,2
1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A & F University, Xianyang 712100, China
2. College of Water Resources and Architectural Engineering, Northwest A & F University, Xianyang 712100, China
3. Shaanxi Province Institute of Water Resources and Electric Power Investigation and Design, Xi’an 710000, China
 全文: PDF(2183 KB)   HTML
摘要:

为了解决土石坝应力变形分析和安全评价中直接参数反演难度大且准确性不足的问题,提出考虑力学成因的变形解耦及参数反演方法. 基于统计模型进行坝顶测点监测沉降分析,将沉降变形解耦为水位与时效分量,从而提高变形组分刻画精度;针对不同分量,构建BP神经网络与遗传算法相结合的优化框架,对湿化与流变模型参数分别开展反演,获取能够反映坝体实际力学行为的关键参数,通过差异化反演提高反演参数精度;基于反演所得模型参数进行有限元计算,从而开展大坝变形特性和裂缝分析. 研究表明,利用上述方法反演参数而后计算得到的沉降变形计算值与实际监测值在坝顶整个范围内均较吻合,偏差控制在合理范围,方法可靠性与精度得到验证. 分析得到的坝顶裂缝开裂情况与实际情况较吻合. 研究成果为土石坝力学参数反演提供了新的思路和方法.

关键词: 高心墙堆石坝监测数据解耦湿化变形流变参数反演    
Abstract:

A deformation decoupling and parameter inversion method considering mechanical causes was proposed, to address the difficulties and limited accuracy associated with direct parameter inversion in stress-deformation analysis and safety evaluation of earth-rockfill dams. Settlement monitoring data at the monitoring points on the dam crest were analyzed using a statistical model, whereby the settlement deformation was decoupled into water-level-dependent and time-dependent components, thus enhancing the accuracy of deformation component characterization. An optimization framework combining BP neural networks and genetic algorithms was then established for different components to separately invert the parameters of the wetting and creep models, thereby obtaining key parameters that reflect the actual mechanical behavior of the dam and improving the accuracy of parameter inversion through differentiated analysis. Based on the inverted parameters, finite element analysis was performed to analyze deformation characteristics and crack development of the dam. Results demonstrated that settlement values calculated with the inverted parameters showed close agreement with field monitoring data across the entire crest, with deviations controlled within a reasonable range, verifying the reliability and accuracy of the proposed method. Moreover, the crack patterns derived from the inverted parameters exhibited high consistency with observed conditions. The findings provide a new technical approach for mechanical parameter inversion of earth-rockfill dams.

Key words: high core wall rockfill dam    monitoring data decoupling    wetting deformation    creep    parameter inversion
收稿日期: 2024-12-06 出版日期: 2025-11-25
CLC:  TP 393  
基金资助: 国家自然科学基金资助项目(52209168);陕西省博士后科研资助项目(2023BSHGZZHQYXMZZ14);中央高校基本科研业务费(2452020207).
作者简介: 周雄雄(1990—),男,副教授,从事粗粒土本构及土石坝数值模拟研究. orcid.org/0000-0001-7232-8425. E-mail:zhouxx@nwafu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周雄雄
何秋江
何纪春
周璟

引用本文:

周雄雄,何秋江,何纪春,周璟. 考虑力学成因的高心墙坝变形解耦及参数反演[J]. 浙江大学学报(工学版), 2025, 59(12): 2616-2626.

Xiongxiong ZHOU,Qiujiang HE,Jichun HE,Jing ZHOU. Deformation decoupling and parameter inversion for high core wall dams considering mechanical causes. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2616-2626.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.016        https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2616

图 1  大坝典型剖面图
图 2  坝顶及下游坝坡监测点布置图
图 3  坝顶上下游侧各测点沉降变形曲线
图 4  坝顶轴线各测点沉降变形曲线
测点${a_1}$$a_2$/10?3$a_3$/10?5$b_1$$b_2$/10?2$b_3$/10?5$c_1$$c_2$RRMSE/cm
TP010.309?3.021.000.566?0.400.7428.525.750.9970.924
TP020.510?5.091.730.926?0.671.4142.445.400.9971.330
TP030.567?4.881.611.217?0.891.9160.005.800.9971.996
TP040.731?7.252.491.450?1.112.5172.975.770.9972.381
TP050.723?7.212.491.472?1.122.5271.146.590.9972.467
TP060.785?9.053.211.227?0.911.9762.576.790.9981.837
TP070.606?6.622.401.074?0.751.5251.487.140.9971.718
TP080.400?4.441.620.567?0.310.4031.936.950.9971.147
TP090.244?2.781.020.288?0.130.0919.017.570.9960.706
LD560.310?2.300.630.620?0.450.9228.703.710.9970.895
LD570.508?3.851.081.098?0.892.1052.646.150.9951.854
LD580.542?4.391.361.277?0.992.2446.373.260.9971.782
LD590.649?5.631.881.451?1.092.4057.784.150.9972.113
LD600.598?5.171.681.268?0.941.9851.613.420.9971.954
LD610.617?5.701.891.165?0.841.7146.923.560.9971.791
LD620.589?5.201.681.039?0.701.3546.854.890.9971.654
LD630.439?4.211.380.569?0.300.3731.935.300.9971.139
TP100.303?2.120.530.582?0.430.9225.973.390.9970.816
TP110.402?2.860.730.785?0.591.2633.803.390.9971.058
TP120.438?2.920.711.022?0.821.8539.342.640.9971.259
TP130.478?3.240.801.205?1.012.4140.112.000.9971.286
TP140.445?3.040.771.148?0.952.2339.362.040.9971.253
TP150.418?3.010.811.013?0.801.8038.862.460.9971.228
TP160.432?3.160.860.834?0.611.2535.513.430.9971.078
TP170.405?3.501.070.561?0.350.6128.074.520.9970.949
表 1  坝顶测点沉降统计模型成果汇总表
图 5  TP3与TP4测点沉降统计模型
图 6  LD58与LD59测点沉降统计模型
图 7  TP12与TP13测点沉降统计模型
图 8  瀑布沟高心墙堆石坝三维有限元模型
图 9  大坝填筑与蓄水过程
参数坝料$\gamma /\left({\mathrm{g}} \cdot {\mathrm{cm}}^{-3}\right)$$K$$n$${R_{\mathrm{f}}}$$ c / {\mathrm{k P a}} $$\varphi_0 /\left(^{\circ}\right)$$\Delta \varphi /\left(^{\circ}\right)$${K_{\mathrm{b}}}$$m$
心墙2.365500.420.760.1235.00.02400.29
反滤2.037900.590.8114.435.50.04000.30
过渡2.159860.360.7411.538.80.05500.32
主堆石2.1010000.520.680.054.010.04200.34
次堆石2.108000.500.700.051.010.03180.30
表 2  瀑布沟大坝主要E-B模型参数
图 10  GA-BP参数反演流程图
参数K0m0K1Acd
反演结果0.0180.1790.0621.1080.3030.121
表 3  湿化模型参数反演结果
图 11  湿化变形计算值与实际值对比图
参数坝料αbcdm1m2m3
上游堆石区0.0050.0370.0840.2290.3830.3650.482
下游主堆石区0.0030.0280.0990.3020.3830.3650.482
下游次堆石区0.0040.0750.1000.4590.7970.4550.542
心墙区0.0020.0720.2530.4850.9360.6790.518
表 4  流变模型参数反演结果
图 12  流变变形计算值与实际值对比图
图 13  大坝0+240断面沉降分布图
图 14  大坝0+240断面水平位移分布图
图 15  大坝0+240断面大主应力分布图
图 16  大坝0+240断面小主应力分布图
图 17  首次出现裂缝时刻坝体表面变形倾度云图
图 18  2022年11月23日坝体表面变形倾度云图
1 OLDECOP L A, ALONSO E E Theoretical investigation of the time-dependent behaviour of rockfill[J]. Géotechnique, 2007, 57 (3): 289- 301
2 SOWERS G F, WILLIAMS R C, WALLACE T S. Compressibility of broken rock and the settlement of rockfills [C]// 6th International Conference on Soil Mechanics and Foundation Engineering. Montreal: [s. n. ], 1965: 561−565.
3 MAHINROOSTA R, ALIZADEH A, GATMIRI B Simulation of collapse settlement of first filling in a high rockfill dam[J]. Engineering Geology, 2015, 187: 32- 44
doi: 10.1016/j.enggeo.2014.12.013
4 JIA Y, CHI S Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization[J]. Computers and Geotechnics, 2015, 65: 87- 96
doi: 10.1016/j.compgeo.2014.11.013
5 SHU X, BAO T, LI Y, et al VAE-TALSTM: a temporal attention and variational autoencoder-based long short-term memory framework for dam displacement prediction[J]. Engineering with Computers, 2022, 38 (4): 3497- 3512
doi: 10.1007/s00366-021-01362-2
6 ZHU Y, XIE M, ZHANG K, et al A dam deformation residual correction method for high arch dams using phase space reconstruction and an optimized long short-term memory network[J]. Mathematics, 2023, 11 (9): 2010
doi: 10.3390/math11092010
7 LI Y, HARIRI-ARDEBILI M A, DENG T, et al A surrogate-assisted stochastic optimization inversion algorithm: parameter identification of dams[J]. Advanced Engineering Informatics, 2023, 55: 101853
doi: 10.1016/j.aei.2022.101853
8 TONINI D. Observed behavior of several Italian arch dams [J]. Journal of the Power Division, 1956, 82(6): False.
9 陈久宇 应用实测位移资料研究刘家峡重力坝横缝的结构作用[J]. 水利学报, 1982, 13 (12): 12- 20
CHEN Jiuyu An investigation of linking action of transverse joints in Liujiaxia gravity dam by analyzing observed deflection data[J]. Journal of Hydraulic Engineering, 1982, 13 (12): 12- 20
10 SALAZAR F, MORÁN R, TOLEDO M Á, et al Data-based models for the prediction of dam behaviour: a review and some methodological considerations[J]. Archives of Computational Methods in Engineering, 2017, 24 (1): 1- 21
doi: 10.1007/s11831-015-9157-9
11 CAO E, BAO T, YUAN R, et al Hierarchical prediction of dam deformation based on hybrid temporal network and load-oriented residual correction[J]. Engineering Structures, 2024, 308: 117949
doi: 10.1016/j.engstruct.2024.117949
12 JIA Y, CHI S Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization[J]. Computers and Geotechnics, 2015, 65: 87- 96
doi: 10.1016/j.compgeo.2014.11.013
13 ZHOU W, LI S, MA G, et al Parameters inversion of high central core rockfill dams based on a novel genetic algorithm[J]. Science China Technological Sciences, 2016, 59 (5): 783- 794
doi: 10.1007/s11431-016-6017-2
14 康飞, 李俊杰, 许青 堆石坝参数反演的蚁群聚类RBF网络模型[J]. 岩石力学与工程学报, 2009, 28 (Suppl.2): 3639- 3644
KANG Fei, LI Junjie, XU Qing Ant colony clustering radial basis function network model for inverse analysis of rockfill dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (Suppl.2): 3639- 3644
15 ZHOU X, SUN X, LI Y, et al Creep parameter inversion for high CFRDs based on improved BP neural network response surface method[J]. Soft Computing, 2022, 26 (18): 9527- 9541
doi: 10.1007/s00500-022-06735-3
16 宋子屹. 基于云神经网络的土石坝坝料动力参数反演研究 [D]. 郑州: 华北水利水电大学, 2022.
SONG Ziyi. Inversion study of dynamic parameters of earth and rock dam materials based on cloud neural network [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2022.
17 李少林, 王朝晴, 周伟, 等 高心墙堆石坝瞬变-流变参数解耦反分析方法及变形预测[J]. 长江科学院院报, 2018, 35 (9): 86- 91
LI Shaolin, WANG Zhaoqing, ZHOU Wei, et al Decoupling inversion of instantaneous and rheological parameters and deformation prediction of high core-wall rockfill dam[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35 (9): 86- 91
18 杨荷, 周伟, 马刚, 等 基于响应面法的高堆石坝瞬变-流变参数反演方法[J]. 岩土力学, 2016, 37 (6): 1697- 1705
YANG He, ZHOU Wei, MA Gang, et al Inversion of instantaneous and rheological parameters of high rockfill dams based on response surface method[J]. Rock and Soil Mechanics, 2016, 37 (6): 1697- 1705
19 柯虎 高心墙堆石坝蓄水变形和裂缝机理分析[J]. 水电与新能源, 2020, 34 (1): 44- 51
KE Hu Analysis of the impoundment deformation and cracking mechanism of a high core wall rockfill dam[J]. Hydropower and New Energy, 2020, 34 (1): 44- 51
20 CHEN C, LU X, LI J, et al A novel settlement forecasting model for rockfill dams based on physical causes[J]. Bulletin of Engineering Geology and the Environment, 2021, 80 (10): 7973- 7988
doi: 10.1007/s10064-021-02403-2
21 吴中如, 陈继禹. 大坝原型观测资料分析方法和模型 [J]. 河海大学科技情报, 1989, 9(2): 48–52, 54–64.
WU Zhongru, CHEN Jiyu. Analysis method and model of dam prototype observation data [J]. Advances in Science and Technology of Water Resources, 1989, 9(2): 48–52, 54–64.
22 刘正云, 顾冲时 探讨较优的土石坝变形时效模型[J]. 长江科学院院报, 2002, 19 (1): 21- 24
LIU Zhengyun, GU Chongshi Probe into relatively better time-effect model of earth-rock dam’s deformation[J]. Journal of Yangtze River Scientific Research Institute, 2002, 19 (1): 21- 24
23 张艺. 基于观测资料的土石坝后期变形研究 [D]. 大连: 大连理工大学, 2019.
ZHANG Yi. Research on the later deformation of earth-rock dam based on observation data [D]. Dalian: Dalian University of Technology, 2019.
24 李国英, 米占宽, 傅华, 等 混凝土面板堆石坝堆石料流变特性试验研究[J]. 岩土力学, 2004, 25 (11): 1712- 1716
LI Guoying, MI Zhankuan, FU Hua, et al Experimental studies on rheological behaviors for rockfills in concrete faced rockfill dam[J]. Rock and Soil Mechanics, 2004, 25 (11): 1712- 1716
25 沈珠江, 赵魁芝 堆石坝流变变形的反馈分析[J]. 水利学报, 1998, 29 (6): 1- 6
SHEN Zhujiang, ZHAO Kuizhi Back analysis of creep deformation of rockfill dams[J]. Journal of Hydraulic Engineering, 1998, 29 (6): 1- 6
26 DUNCAN J M, CHANG C Y Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96 (5): 1629- 1653
doi: 10.1061/JSFEAQ.0001458
27 周雄雄. 高心墙堆石坝湿化变形与数值模拟方法研究 [D]. 大连: 大连理工大学, 2020.
ZHOU Xiongxiong. Study on the wetting deformation and the numerical simulation method of HCRFD [D]. Dalian: Dalian University of Technology, 2020.
28 郭德全, 严军, 杨兴国, 等 瀑布沟高土石坝三维非线性有限元分析[J]. 人民黄河, 2014, 36 (5): 93- 95
GUO Dequan, YAN Jun, YANG Xingguo, et al The 3-D nonlinear FEM analysis of pubugou high rockfill dam[J]. Yellow River, 2014, 36 (5): 93- 95
29 庄文宇, 张如九, 徐建军, 等 基于IAGA-BP算法的高拱坝-坝基力学参数反演分析[J]. 清华大学学报: 自然科学版, 2022, 62 (8): 1302- 1313
ZHUANG Wenyu, ZHANG Rujiu, XU Jianjun, et al Inversion analysis to determine the mechanical parameters of a high arch dam and its foundation based on an IAGA-BP algorithm[J]. Journal of Tsinghua University: Science and Technology, 2022, 62 (8): 1302- 1313
30 叶晓峰, 周伟, 马刚, 等 基于反演参数的心墙堆石坝坝顶裂缝成因研究[J]. 武汉大学学报: 工学版, 2022, 55 (3): 220- 228
YE Xiaofeng, ZHOU Wei, MA Gang, et al Study on the cause of crest cracking of earth-core rockfill dam based on inversion parameters[J]. Engineering Journal of Wuhan University, 2022, 55 (3): 220- 228
31 江金龙. 改进遗传算法及其在波束形成中的应用 [D]. 南京: 河海大学, 2005.
JIANG Jinlong. Improved genetic algorithm with application to beam-forming for smart antenna [D]. Nanjing: Hohai University, 2005.
32 CHICCO D, WARRENS M J, JURMAN G The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. PeerJ Computer Science, 2021, 7: e623
doi: 10.7717/peerj-cs.623
33 刘祖德 土石坝变形计算的若干问题[J]. 岩土工程学报, 1983, 5 (1): 1- 13
LIU Zude Some problems about the calculation of deformation of earth-rock dams[J]. Chinese Journal of Geotechnical Engineering, 1983, 5 (1): 1- 13
34 张雯昕. 考虑不确定性的土石坝湿化变形参数反演研究 [D]. 郑州: 华北水利水电大学, 2020.
ZHANG Wenxin. Research on back analysis of wet deformation parameters of earth-rock dam considering uncertainty [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2022.
35 程欣悦, 马刚, 张贵科, 等 考虑监测数据时序特征和空间分布的堆石坝参数反演研究[J]. 水力发电学报, 2024, 43 (5): 54- 67
CHENG Xinyue, MA Gang, ZHANG Guike, et al Study on parameter inversion of rockfill dams considering time series features and spatial distribution of monitoring data[J]. Journal of Hydroelectric Engineering, 2024, 43 (5): 54- 67
36 朱晟, 路德任 基于改进粒子群算法的面板堆石坝流变反演分析[J]. 岩石力学与工程学报, 2022, 41 (Suppl.1): 2971- 2978
ZHU Sheng, LU Deren Rheological inversion analysis of CFRD based on improved particle swarm optimization algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (Suppl.1): 2971- 2978
[1] 杨华中,赵建昌,余云燕,王立安. 流变性土排桩地基的禁振带隙[J]. 浙江大学学报(工学版), 2023, 57(7): 1410-1417.
[2] 胡安峰,姜浩,肖志荣,谢森林,龚昭祺,李文乾. 基于分数阶模型的隧道周围土体非线性流变固结分析[J]. 浙江大学学报(工学版), 2023, 57(11): 2227-2234.
[3] 李晓田,谢广年,高竹锐,张声军,李军师. 基于水泥净浆流变性的振动-剪切等效理论[J]. 浙江大学学报(工学版), 2022, 56(7): 1336-1341.
[4] 王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.
[5] 张勤玲,黄志义. 高温高湿盐环境下SBS改性沥青胶浆的高温性能[J]. 浙江大学学报(工学版), 2021, 55(1): 38-45.
[6] 张剑锋,赵朋,周宏伟,傅建中,陈子辰. 注射成形中聚合物熔体黏度的在线测量装置[J]. 浙江大学学报(工学版), 2020, 54(8): 1474-1480.
[7] 于露,金龙哲,徐明伟,刘建国. 基于HHT分解光电容积脉搏波信号的人体血液流变信息评估[J]. 浙江大学学报(工学版), 2020, 54(2): 340-347.
[8] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[9] 罗跃, 叶淑君, 吴吉春, 章艳红, 焦珣, 王寒梅. 地面沉降模型的参数全局敏感性[J]. 浙江大学学报(工学版), 2018, 52(10): 2007-2013.
[10] 康志军, 黄润秋, 卫彬, 谭勇. 上海软土地区某逆作法地铁深基坑变形[J]. 浙江大学学报(工学版), 2017, 51(8): 1527-1536.
[11] 陈昭晖, 倪一清. 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报(工学版), 2017, 51(8): 1551-1558.
[12] 欧阳青, 李赵春, 郑佳佳, 王炅. 多阶并联式磁流变缓冲器可控性分析[J]. 浙江大学学报(工学版), 2017, 51(5): 961-968.
[13] 韩旭,毛飞燕,黄群星,池涌,严建华. 储运油泥中非油相组分对表观黏度的影响分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2064-2068.
[14] 谢新宇,李金柱,王文军,刘开富,朱向荣. 宁波软土流变试验及经验模型[J]. J4, 2012, 46(1): 64-71.
[15] 胡亚元, 江涛. 次固结系数对准超固结土固结特性的影响[J]. J4, 2011, 45(6): 1088-1093.