Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (11): 2227-2234    DOI: 10.3785/j.issn.1008-973X.2023.11.010
环境与土木工程     
基于分数阶模型的隧道周围土体非线性流变固结分析
胡安峰1,2(),姜浩1,3,肖志荣4,*(),谢森林1,龚昭祺5,李文乾6
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江大学 平衡建筑研究中心,浙江 杭州 310058
3. 浙江大学 建筑设计研究院有限公司,浙江 杭州 310028
4. 浙江科技学院 土木与建筑工程学院,浙江 杭州 310023
5. 浙江省建筑设计研究院,浙江 杭州 310006
6. 中铁十局集团城市轨道交通工程有限公司,广东 广州 511400
Nonlinear rheological consolidation analysis of soil around tunnel based on fractional order model
An-feng HU1,2(),Hao JIANG1,3,Zhi-rong XIAO4,*(),Sen-lin XIE1,Zhao-qi GONG5,Wen-qian LI6
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310058, China
3. The Architectural Design and Research Institute of Zhejiang University Co. Ltd, Hangzhou 310028, China
4. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
5. Zhejiang Province Architectural Design and Research Institute, Hangzhou 310006, China
6. Urban Rail Traffic Engineering Branch of China Railway No.10 Engineering Group, Guangzhou 511400, China
 全文: PDF(1242 KB)   HTML
摘要:

考虑隧道周围饱和软土压缩性和渗透性非线性变化,建立二维非线性固结控制方程,引入分数阶Merchant模型考虑土体流变特性影响,采用Douglas-Jone格式的交替隐式差分法对方程进行求解. 通过与现有解析解进行对比,验证了本研究解的正确性. 利用得到的差分解进行参数分析,研究隧道周围饱和软土的非线性流变固结特性. 结果表明,隧道渗漏模式、初始渗透系数和渗透指数对土体固结速率影响较大,透水通道越多、初始渗透系数越大、渗透指数越小,土体固结速率越快,而压缩指数对固结速率的影响较小;渗透各向异性系数对固结速率有较大影响,在进行固结性状分析时,应当充分考虑土体不同方向渗透系数的差异;当考虑土体流变特性时,土体固结速率显著减小,但当初始渗透系数增大到一定程度时,土体流变特性对土层固结速率的影响可以忽略.

关键词: 隧道饱和软土非线性流变固结有限差分法分数阶模型    
Abstract:

The two-dimensional nonlinear consolidation control equation was established, considering the nonlinear changes of compressibility and permeability of the saturated soft soil around the tunnel. The fractional-order Merchant model was introduced to consider the influence of soil rheological properties, and the alternating implicit difference method in Douglas-Jone format was used to solve the equation. The correctness of the solutions was verified by the comparison with the existing analytical solutions. The nonlinear rheological consolidation characteristics of the saturated soft soil around the tunnel were investigated by using the obtained difference decomposition for parametric analysis. Results show that the tunnel leakage pattern, initial permeability coefficient, and permeability index have a large influence on the consolidation rate of the soil, and the more the permeable channels, the larger the initial permeability coefficient, and the smaller the permeability index, the faster the consolidation rate of the soil, while the compression index has a smaller influence on the consolidation rate. The coefficient of permeability anisotropy has a significant effect on the rate of consolidation, and the difference in permeability coefficients in different directions of the soil should be fully considered in the analysis of consolidation properties. When considering the rheological properties of the soil, the consolidation rate of the soil slows down significantly, but when the initial permeability coefficient increases to a certain degree, the effect of the rheological properties of the soil on the consolidation rate of the soil layer can be ignored.

Key words: tunnel    saturated soft soil    nonlinear rheological consolidation    finite difference method    fractional order model
收稿日期: 2022-12-29 出版日期: 2023-12-11
CLC:  TU 43  
基金资助: 国家自然科学基金资助项目(52378419, 51978612)
通讯作者: 肖志荣     E-mail: anfenghu@zju.edu.cn;100106@zust.edu.cn
作者简介: 胡安峰(1974—),男,教授,从事桩基工程、软黏土力学、近海岩土工程及深度学习理论在岩土工程中的应用研究. orcid.org/0000-0002-3278-0238. E-mail: anfenghu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡安峰
姜浩
肖志荣
谢森林
龚昭祺
李文乾

引用本文:

胡安峰,姜浩,肖志荣,谢森林,龚昭祺,李文乾. 基于分数阶模型的隧道周围土体非线性流变固结分析[J]. 浙江大学学报(工学版), 2023, 57(11): 2227-2234.

An-feng HU,Hao JIANG,Zhi-rong XIAO,Sen-lin XIE,Zhao-qi GONG,Wen-qian LI. Nonlinear rheological consolidation analysis of soil around tunnel based on fractional order model. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2227-2234.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.010        https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2227

图 1  隧道周围饱和软土非线性流变固结计算模型
图 2  任一时间步下模型网格示意图
参数 数值 参数 数值
h/m 11 H/m 30
r2/m 3.10 u0/kPa 30
r1/m 2.75 Cc 0.25
ks/(m·s?1) 5.40×10?9 Ck 0.25
κ 0.018 γs/(N·m?3) 18
B/m 25 e0 1.40
表 1  模型几何参数和物理参数
图 3  本研究解与已有解析解对比
图 4  盾构管片渗漏示意图
图 5  隧道渗漏模式影响下的固结速率对比
图 6  渗透各向异性影响下的固结速率对比
图 7  初始渗透系数影响下的固结速率对比
图 8  渗透指数影响下的固结速率对比
图 9  压缩指数影响下的固结速率对比
1 YI X, ROWE R K, LEE K M Observed and calculated pore pressures and deformations induced by an earth balance shield[J]. Canadian Geotechnical Journal, 1993, 30 (3): 476490
2 SHIRLAW J N Observed and calculated pore pressures and deformations induced by an earth balance shield: discussion[J]. Canadian Geotechnical Journal, 1995, 32 (1): 181- 189
doi: 10.1139/t95-017
3 张冬梅, 黄宏伟, 王箭明 软土隧道地表长期沉降的粘弹性流变与固结耦合分析[J]. 岩石力学与工程学报, 2003, (Suppl.1): 2359- 2362
ZHANG Dong-mei, HUANG Hong-wei, WANG Jian-ming Analysis of long-term settlements over tunnels using visco-elastic constitutive model coupled with consolidation theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, (Suppl.1): 2359- 2362
4 詹美礼, 钱家欢, 陈绪禄 粘弹塑性有限单元法及其在隧道分析中的应用[J]. 土木工程学报, 1993, 26 (3): 13- 21
ZHAN Mei-li, QIAN Jia-huan, CHEN Xu-lu Visco-elastic-plastic F. E. M. and its application in tunnel analysis[J]. China Civil Engineering Journal, 1993, 26 (3): 13- 21
doi: 10.15951/j.tmgcxb.1993.03.002
5 童磊. 软土浅埋隧道变形、渗流及固结性状研究[D]. 杭州: 浙江大学, 2010.
TONG Lei. Studies on land subsidence, seepage field and consolidation behavior of soft soil around a shallow circular tunnel [D]. Hangzhou: Zhejiang University, 2010
6 包鹤立. 衬砌局部渗漏条件下软土盾构隧道的长期性态研究[D]. 上海: 同济大学. 2008.
BAO He-li. Research on the long-term behavior of sheild tunnel with partially sealed linings in soft soil[D]. Shanghai: Tongji University, 2008.
7 LI X Stress and displacement fields around a deep circular tunnel with partial sealing[J]. Computers and Geotechnics, 1999, 24 (2): 125- 140
doi: 10.1016/S0266-352X(98)00035-4
8 刘干斌, 谢康和, 施祖元, 等 横观各向同性土中深埋圆形隧道的应力和位移分析[J]. 岩土工程学报, 2003, 25 (6): 727- 731
LIU Gan-bin, XIE Kang-he, SHI Zu-yuan, et al. Analysis of stress and displacement around a deep circular tunnel in transversely isotropic soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25 (6): 727- 731
doi: 10.3321/j.issn:1000-4548.2003.06.018
9 曹奕. 软土中盾构隧道的长期非线性固结变形研究[D]. 杭州: 浙江大学, 2014.
CAO Yi. Research on long-term nonlinear consolidation deformation of shield tunnel in soft soil[D]. Hangzhou: Zhejiang University, 2014
10 李传勋, 谢康和, 胡安峰, 等 基于指数形式渗流下的软土一维非线性固结分析[J]. 中南大学学报: 自然科学版, 2012, 43 (7): 2789- 2795
LI Chuan-xun, XIE Kang-he, HU An-feng, et al Analysis of one-dimensional non-linear consolidation with exponential flow[J]. Journal of Central South University: Science and Technology, 2012, 43 (7): 2789- 2795
11 ZHANG C Y. Viscoelastic fracture mechanics[M]. Beijing: Science Press, 2006.
12 袁静, 龚晓南, 益德清 岩土流变模型的比较研究[J]. 岩石力学与工程学报, 2001, (6): 772- 779
YUAN Jing, GONG Xiao-nan, YI De-qing Comparison study on rheological constitutive models[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, (6): 772- 779
doi: 10.3321/j.issn:1000-6915.2001.06.004
13 BLAIR G W S The role of psychophysics in rheology[J]. Journal of Colloid Science, 1947, 2 (1): 21- 32
doi: 10.1016/0095-8522(47)90007-X
14 GERASIMOV A N A generalization of linear laws of deformation and its application to inner friction problems[J]. Journal of Applied Mathematics and Mechanics, 1948, 12: 251- 259
15 PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
16 YIN D S, WU H, CHENG C, et al Fractional order constitutive model of geomaterials under the condition of triaxial test[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37 (8): 961972
17 CAPUTO M. Elasticità dissipazione[M]. Bologna: Zanichelli, 1969.
18 BAGLEY R L, TORVIK P J A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology, 1983, 27 (3): 201- 230
doi: 10.1122/1.549724
19 KOELLER R C Applications of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51 (2): 299- 307
doi: 10.1115/1.3167616
20 孙海忠, 张卫 一种分析软土黏弹性的分数导数开尔文模型[J]. 岩土力学, 2007, 28 (9): 1983- 1986
SUN Hai-zhong, ZHANG Wei Analysis of soft soil with viscoelastic fractional derivative Kelvin model[J]. Rock and Soil Mechanics, 2007, 28 (9): 1983- 1986
doi: 10.3969/j.issn.1000-7598.2007.09.041
21 何利军, 孔令伟, 吴文军, 等 采用分数阶导数描述软黏土蠕变的模型[J]. 岩土力学, 2011, 32 (Suppl.1): 239- 249
HE Li-jun, KONG Ling-wei, WU Wen-jun, et al A description of creep model for soft soil with fractional derivative[J]. Rock and Soil Mechanics, 2011, 32 (Suppl.1): 239- 249
doi: 10.16285/j.rsm.2011.s2.022
22 YIN D S, LI Y Q, WU H, et al Fractional description of mechanical property evolution of soft soils during creep[J]. Water Science and Engineering, 2013, 6 (4): 446- 455
23 罗庆姿, 陈晓平, 王盛, 等 软黏土变形时效性的试验及经验模型研究[J]. 岩土力学, 2016, 37 (1): 66- 75
LUO Qing-zi, CHEN Xiao-ping, WANG Sheng, et al An experimental study of time-dependent deformation behavior of soft soil and its empirical model[J]. Rock and Soil Mechanics, 2016, 37 (1): 66- 75
doi: 10.16285/j.rsm.2016.01.008
24 解益, 李培超, 汪磊, 等 分数阶导数黏弹性饱和土体一维固结半解析解[J]. 岩土力学, 2017, 38 (11): 3240- 3246
XIE Yi, LI Pei-chao, WANG Lei, et al Semi-analytical solution for one-dimensional consolidation of viscoelastic saturated soil with fractional order derivative[J]. Rock and Soil Mechanics, 2017, 38 (11): 3240- 3246
doi: 10.16285/j.rsm.2017.11.020
25 刘忠玉, 杨强 基于分数阶Kelvin模型的饱和黏土一维流变固结分析[J]. 岩土力学, 2017, 38 (12): 3680- 3687
LIU Zhong-yu, YANG Qiang One-dimensional rheological consolidation analysis of saturated clay using fractional order Kelvin's model[J]. Rock and Soil Mechanics, 2017, 38 (12): 3680- 3687
doi: 10.16285/j.rsm.2017.12.036
26 汪磊, 李林忠, 徐永福, 等 半透水边界下分数阶黏弹性饱和土一维固结特性分析[J]. 岩土力学, 2018, 39 (11): 4142- 4148
WANG Lei, LI Lin-zhong, XU Yong-fu, et al Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary[J]. Rock and Soil Mechanics, 2018, 39 (11): 4142- 4148
doi: 10.16285/j.rsm.2017.0659
27 刘忠玉, 崔鹏陆, 郑占垒, 等 基于非牛顿指数渗流和分数阶Merchant模型的一维流变固结分析[J]. 岩土力学, 2019, 40 (6): 2029- 2038
LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, et al. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant's model[J]. Rock and Soil Mechanics, 2019, 40 (6): 2029- 2038
doi: 10.16285/j.rsm.2018.1085
28 黄明华, 胡可馨, 赵明华 分数阶黏弹性地基中洞周超孔隙水压力消散特性分析[J]. 岩土工程学报, 2020, 42 (8): 1446- 1455
HUANG Ming-hua, HU Ke-xin, ZHAO Ming-hua Dissipation characteristics of excess pore-water pressure around tunnels in viscoelastic foundation using a fractional-derivative model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (8): 1446- 1455
doi: 10.11779/CJGE202008009
29 刘忠玉, 张家超, 郑占垒, 等 考虑Hansbo渗流的二维Biot固结有限元分析[J]. 岩土力学, 2018, 39 (12): 4617- 4626
LIU Zhong-yu, ZHANG Jia-chao, ZHENG Zhan-lei, et al Finite element analysis of two-dimensional Biot’s consolidation with Hansbo’s flow[J]. Rock and Soil Mechanics, 2018, 39 (12): 4617- 4626
doi: 10.16285/j.rsm.2017.0892
30 蒋洪胜, 侯学渊 盾构掘进对隧道周围土层扰动的理论与实测分析[J]. 岩石力学与工程学报, 2003, 22 (9): 1514- 1520
JIANG Hong-sheng, HOU Xue-yuan Theoretical study and analysis of site observation on the influence of shield excavation on soft clays around tunnel[J]. Chinese Journal of Geotechnical Engineering, 2003, 22 (9): 1514- 1520
doi: 10.3321/j.issn:1000-6915.2003.09.022
31 DAVIS E H, RAYMOND G P A nonlinear theory of consolidation[J]. Géotechnique, 1965, 15 (2): 161- 173
32 MESRI G, ROKHSAR A Theory of consolidation for clays[J]. Journal of the Geotechnical Engineering Division, ASCE, 1974, 100 (8): 889- 903
doi: 10.1061/AJGEB6.0000075
33 李锐铎, 乐金朝 基于分数阶导数的软土非线性流变本构模型[J]. 应用基础与工程科学学报, 2014, 22 (5): 856- 863
LI Rui-duo, YUE Jin-chao Nonlinear rheological constitute of soft soil based on fractional order derivative theory[J]. Journal of Basic Science and Engineering, 2014, 22 (5): 856- 863
34 NASH D F T, RYDE S J Modelling consolidation accelerated by vertical drains in soils subject to creep[J]. Géotechnique, 2001, 51 (3): 257- 273
35 孙钧. 岩土材料流变及其工程应用[M]. 北京: 中国建筑工业出版社, 1999.
36 胡浩, 周建, 张晓, 等 软土渗透各向异性特性及其微观机理研究[J]. 低温建筑技术, 2021, 43 (6): 101- 105
HU Hao, ZHOU Jian, ZHANG Xiao, et al Study on the permeability anisotropy and microscopic mechanism of soft soil[J]. Low Temperature Architecture Technology, 2021, 43 (6): 101- 105
doi: 10.13905/j.cnki.dwjz.2021.06.024
[1] 温小宝,韩兴博,叶飞,邓念兵,杨海挺,张兴冰,王培源. 公路隧道运营环境的二氧化碳分布特性[J]. 浙江大学学报(工学版), 2024, 58(1): 109-120.
[2] 陈星宇,吴剑,任松,张平,邓超,孔令伟. 高海拔隧道施工期污染物扩散规律[J]. 浙江大学学报(工学版), 2024, 58(1): 176-187.
[3] 马庆禄,鲁佳萍,唐小垚,段学锋. 改进YOLOv5s的公路隧道烟火检测方法[J]. 浙江大学学报(工学版), 2023, 57(4): 784-794.
[4] 李瀚源,李兴高,刘杨,杨益,马明哲. 跨活动断层盾构隧道纵向受力及变形特征[J]. 浙江大学学报(工学版), 2023, 57(2): 340-352.
[5] 乔世范,蔡子勇,张震,檀俊坤. 南沙港区软土狭长深基坑围护体系性状[J]. 浙江大学学报(工学版), 2022, 56(8): 1473-1484.
[6] 王建锋,邱雨,刘水宙. 基于图像补偿的隧道衬砌裂缝检测方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1404-1415.
[7] 李瀚源,李兴高,马明哲,刘浩,杨益. 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报(工学版), 2022, 56(4): 631-639.
[8] 任松,朱倩雯,涂歆玥,邓超,王小书. 基于深度学习的公路隧道衬砌病害识别方法[J]. 浙江大学学报(工学版), 2022, 56(1): 92-99.
[9] 李建斌,武颖莹,李鹏宇,郑霄峰,徐剑安,鞠翔宇. 基于局部线性嵌入和支持向量机回归的TBM施工参数预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1426-1435.
[10] 韩兴博,叶飞,梁晓明,冯浩岚,王蕾,夏永旭. 公路隧道钢筋混凝土衬砌碳化耐久性区划[J]. 浙江大学学报(工学版), 2021, 55(8): 1436-1443.
[11] 冯国辉,徐长节,郑茗旺,薛齐,杨开放,管凌霄. 侧向土体影响下盾构隧道引起上覆管线变形[J]. 浙江大学学报(工学版), 2021, 55(8): 1453-1463.
[12] 张春新,朱鸿鹄,李豪杰,张巍,刘春. 支护压力控制下隧道周围砂土变形破坏物质点法模拟[J]. 浙江大学学报(工学版), 2021, 55(7): 1317-1326.
[13] 刘春晓,陶连金,边金,张宇,冯锦华,代希彤,王兆卿. 可液化土层对地下结构地震影响的振动台试验[J]. 浙江大学学报(工学版), 2021, 55(7): 1327-1338.
[14] 颉芳弟,翟强,顾伟红. 基于动态贝叶斯网络的TBM卡机风险预测[J]. 浙江大学学报(工学版), 2021, 55(7): 1339-1350.
[15] 万有财,张雷,李明,刘斌,梅元贵. 山区高速列车车体动态当量泄漏面积阈值[J]. 浙江大学学报(工学版), 2021, 55(4): 695-703.