土木工程、水利工程、交通工程 |
|
|
|
|
基于图像补偿的隧道衬砌裂缝检测方法 |
王建锋1,2( ),邱雨1,刘水宙1 |
1. 长安大学 汽车学院,陕西 西安 710064 2. 陕西省道路交通智能检测与装备工程技术研究中心,陕西 西安 710064 |
|
Tunnel lining crack detection method based on image compensation |
Jian-feng WANG1,2( ),Yu QIU1,Shui-zhou LIU1 |
1. School of Automobile, Chang’an University, Xi’an 710064, China 2. Shaanxi Road Traffic Intelligent Detection and Equipment Engineering Technology Research Centre, Xi’an 710064, China |
1 |
冷彪, 崔兆东, 杨辉, 等 基于线阵相机的运营隧道衬砌裂缝图像采集方法试验研究[J]. 现代隧道技术, 2020, 57 (1): 156- 161 LENG Biao, CUI Zhao-dong, YANG Hui, et al Experimental research on image acquisition method of tunnel lining cracks based on line-scanning digital camera[J]. Modern Tunneling Technology, 2020, 57 (1): 156- 161
|
2 |
李庆桐, 黄宏伟 基于数字图像的盾构隧道衬砌裂缝病害诊断[J]. 岩石力学与工程学报, 2020, 39 (8): 1658- 1670 LI Qing-tong, HUANG Hong-wei Diagnosis of structural cracks of shield tunnel lining based on digital images[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (8): 1658- 1670
|
3 |
蒋宇静, 张学朋 隧道衬砌自动化检测及健康评价技术研究[J]. 隧道建设, 2021, 41 (3): 341- 348 JIANG Yu-jing, ZHANG Xue-peng Research on automatic detection and health assessment of tunnel lining[J]. Tunnel Construction, 2021, 41 (3): 341- 348
|
4 |
冯德山, 杨子龙 基于深度学习的隧道衬砌结构物探地雷达图像自动识别[J]. 地球物理学进展, 2020, 35 (4): 1552- 1556 FENG De-shan, YANG Zi-long Automatic recognition of ground penetrating radar image of tunnel lining structure based on deep learning[J]. Progress in Geophysics, 2020, 35 (4): 1552- 1556
doi: 10.6038/pg2020DD0325
|
5 |
黄震, 张陈龙, 傅鹤林, 等 隧道检测设备的发展及未来展望[J]. 公路交通科技, 2021, 38 (2): 98- 109 HUANG Zhen, ZHANG Chen-long, FU He-lin, et al Development and future prospect of tunnel machine detection equipment[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (2): 98- 109
doi: 10.3969/j.issn.1002-0268.2021.02.013
|
6 |
ZHAO S, ZHANG D, HUANG H Deep learning based image instance segmentation for moisture marks of shield tunnel lining[J]. Tunneling and Underground Space Technology, 2020, 95 (1): 103156
|
7 |
林海山, 张彦龙 公路隧道病害快速检测技术发展和应用现状[J]. 中外公路, 2020, 40 (1): 176- 179 LIN Hai-shan, ZHANG Yan-long Development and application status of rapid detection technology of highway tunnel diseases[J]. Journal of China and Foreign Highway, 2020, 40 (1): 176- 179
|
8 |
FARAHANI B, BARROS F, SOUSA P A coupled 3D laser scanning and digital image correlation system for geometry acquisition and deformation monitoring of a railway tunnel[J]. Tunneling and Underground Space Technology, 2019, 91 (9): 102995
|
9 |
ATTARD L, DEBONO C J, VALENTINO G, et al Vision-based change detection for inspection of tunnel liners[J]. Automation in Construction, 2018, 91: 142- 154
doi: 10.1016/j.autcon.2018.03.020
|
10 |
GAO Z, LI F, LIU Y, et al Tunnel contour detection during construction based on digital image correlation[J]. Optics and Lasers in Engineering, 2020, 126 (5): 105879
|
11 |
YU S, JANG J, HAN C Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel[J]. Automation in Construction, 2007, 16 (3): 255- 261
doi: 10.1016/j.autcon.2006.05.003
|
12 |
王平让, 黄宏伟, 薛亚东 基于图像局部网格特征的隧道衬砌裂缝自动识别[J]. 岩石力学与工程学报, 2012, 31 (5): 991- 999 WANG Ping-rang, HUANG Hong-wei, XUE Ya-dong Automatic recognition of cracks in tunnel lining based on characteristics of local grids in images[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (5): 991- 999
doi: 10.3969/j.issn.1000-6915.2012.05.016
|
13 |
STENT S, GHERA R, STENGE R, et al Visual change detection on tunnel linings[J]. Machine Vision and Applications, 2016, 27 (3): 319- 330
doi: 10.1007/s00138-014-0648-8
|
14 |
薛亚东, 李宜城 基于深度学习的盾构隧道衬砌病害识别方法[J]. 湖南大学学报: 自然科学版, 2018, 45 (3): 100- 109 XUE Ya-dong, LI Yi-cheng A method of disease recognition for shield tunnel lining based on deep learning[J]. Journal of Hunan University: Natural Science, 2018, 45 (3): 100- 109
|
15 |
江桁, 刘学增, 朱合华 基于隧道快速检测车数据的公路隧道衬砌开裂识别模型研究[J]. 现代隧道技术, 2020, 57 (5): 61- 65 JIANG Heng, LIU Xue-zeng, ZHU He-hua Research on crack identification of highway tunnel linings based on data obtained from the testing vehicle[J]. Modern Tunneling Technology, 2020, 57 (5): 61- 65
|
16 |
HUANG H, SUN Y, XUE Y, et al Inspection equipment study for subway tunnel defects by grey-scale image processing[J]. Advanced Engineering Informatics, 2017, 32 (4): 188- 201
|
17 |
JIANG Y, ZHANG X, TANIGUCHI T Quantitative condition inspection and assessment of tunnel lining[J]. Automation in Construction, 2019, 102 (6): 258- 269
|
18 |
唐钱龙, 谭园, 彭立敏, 等 基于数字图像技术的隧道衬砌裂缝识别方法研究[J]. 铁道科学与工程学报, 2019, 16 (12): 3041- 3049 TANG Qian-long, TAN Yuan, PENG Li-min, et al Crack identification method for tunnel linings based on digital image technology[J]. Journal of Railway Science and Engineering, 2019, 16 (12): 3041- 3049
|
19 |
石钰锋, 彭斌, 祝志恒, 等 隧道衬砌裂缝精细化识别及其评价[J]. 公路交通科技, 2020, 37 (2): 99- 106 SHI Yu-feng, PENG Bin, ZHU Zhi-heng, et al Refined identification of tunnel lining cracks and its evaluation[J]. Journal of Highway and Transportation Research and Development, 2020, 37 (2): 99- 106
|
20 |
代成刚, 林明星, 王震, 等 基于亮通道色彩补偿与融合的水下图像增强[J]. 光学学报, 2018, 38 (11): 86- 95 DAI Cheng-gang, LIN Ming-xing, WANH Zhen, et al Color compensation based on bright channel and fusion for underwater image enhancement[J]. Acta Optica Sinica, 2018, 38 (11): 86- 95
|
21 |
马文涛, 樊春玲 基于计算机视觉路面裂缝的识别与测量[J]. 电子测量技术, 2020, 43 (19): 85- 88 MA Wen-tao, FAN Chun-ling Recognition and measurement of pavement cracks based on computer vision[J]. Electronic Measurement Technology, 2020, 43 (19): 85- 88
|
22 |
高尚兵, 颉正, 潘志庚, 等 一种新的路面裂缝自动检测算法[J]. 系统仿真学报, 2017, 29 (9): 2009- 2015 GAO Shang-bing, XIE Zheng, PAN Zhi-geng, et al Novel automatic pavement crack detection algorithm[J]. Journal of System Simulation, 2017, 29 (9): 2009- 2015
|
23 |
杨杰文, 章光, 陈西江, 等 融合深度学习聚类分割和 形态学的混凝土表面裂缝量化识别[J]. 激光与光电子学进展, 2020, 57 (22): 242- 252 YANG Jie-wen, ZHANG Guang, CHEN Xi-jiang, et al Quantitative identification of concrete surface cracks based on deep learning clustering segmentation and morphology[J]. Laser and Optoelectronics Progress, 2020, 57 (22): 242- 252
|
24 |
姜吉荣, 陈小惠 基于多特征的路面裂缝目标提取方法[J]. 计算机技术与发展, 2016, 26 (5): 173- 178 JIANG Ji-rong, CHEN Xiao-hui Pavement crack object extraction method based on multi-features[J]. Computer Technology and Development, 2016, 26 (5): 173- 178
|
25 |
孙亮, 邢建春, 谢立强, 等 基于自适应阈值Canny算法的裂缝检测方法研究[J]. 微型机与应用, 2017, 36 (5): 35- 37 SUN Liang, XING Jian-chun, XIE Li-qiang, et al An adaptive threshold-based Canny algorithm for crack detection[J]. Microcomputer and Applications, 2017, 36 (5): 35- 37
|
26 |
赵芳, 周旺辉, 陈岳涛, 等 改进的Canny算子在裂缝检测中的应用[J]. 电子测量技术, 2018, 41 (20): 107- 111 ZHAO Fang, ZHOU Wang-hui, CHEN Yue-tao, et al Application of improved canny operator in crack detection[J]. Electronic Measurement Technology, 2018, 41 (20): 107- 111
|
27 |
徐欢, 李振璧, 姜媛媛, 等 基于OpenCV和改进Canny算子的路面裂缝检测[J]. 计算机工程与设计, 2014, 35 (12): 4254- 4258 XU Huan, LI Zhen-bi, JIANG Yuan-yuan, et al Pavement crack detection based on OpenCV and improveed Canny operator[J]. Computer Engineering and Design, 2014, 35 (12): 4254- 4258
doi: 10.3969/j.issn.1000-7024.2014.12.038
|
28 |
朱鑫, 漆泰岳, 王睿, 等 一种改进的用于裂缝图像分割的Otsu方法[J]. 地下空间与工程学报, 2017, 13 (Supple.1): 80- 84 ZHU Xin, QI Tai-yue, WANG Rui, et al An improved Otsu method for image segmentation of cracks[J]. Chinese Journal of Underground Space and Engineering, 2017, 13 (Supple.1): 80- 84
|
29 |
娄联堂, 何慧玲 基于图像灰度变换的OTSU阈值优化算法[J]. 中南民族大学学报: 自然科学版, 2021, 40 (3): 325- 330 LOU Lian-tang, HE Hui-ling OTSU threshold optimization algorithm based on image gray level transformation[J]. Journal of South-Central University for Nationalities: Natural Science Edition, 2021, 40 (3): 325- 330
|
30 |
梁义涛, 孟亚敏, 朱玲艳, 等 二维Otsu拟合线阈值图像分割方法[J]. 科学技术与工程, 2021, 21 (9): 3689- 3697 LIANG Yi-tao, MENG Ya-min, ZHU Ling-yan, et al Image segmentation with two-dimensional Otsu fitting line threshold method[J]. Science Technology and Engineering, 2021, 21 (9): 3689- 3697
doi: 10.3969/j.issn.1671-1815.2021.09.038
|
31 |
曾诚, 宋燕 改进的OTSU和最大熵结合的迭代图像分割算法[J]. 智能计算机与应用, 2020, 10 (12): 121- 125 ZENG Cheng, SONG Yan An improved image segmentation algorithm based on Otsu and maximum entropy[J]. Intelligent Computer and Applications, 2020, 10 (12): 121- 125
doi: 10.3969/j.issn.2095-2163.2020.12.027
|
32 |
宋浒, 张利, 许梦晗, 等 基于形态学和小波变换的图像边 缘检测方法[J]. 西南大学学报: 自然科学版, 2020, 42 (4): 105- 111 SONG Hu, ZAHNG Li, XU Meng-han, et al An image edge detection method based on morphology and wavelet transform[J]. Journal of Southwest University: Natural Science Edition, 2020, 42 (4): 105- 111
|
33 |
余小庆, 陈仁文, 唐杰, 等 融合小波变换和新形态学的含噪图像边缘检测[J]. 计算机科学, 2018, 45 (Supple.2): 194- 197 XU Xiao-qing, CHEN Ren-wen, TANG Jie, et al Edge detection for noisy image based on transform and new mathematical morphology[J]. Computer Science, 2018, 45 (Supple.2): 194- 197
|
34 |
李东兴, 高倩倩, 张起, 等 融合数学形态学滤波技术的边缘检测算法[J]. 山东理工大学学报: 自然科学版, 2018, 32 (6): 1- 5 LI Dong-xing, GAO Qian-qian, ZHANG Qi, et al Edge detection algorithm fused with mathematical morphology technology[J]. Journal of Shandong University of Technology: Natural Science Edition, 2018, 32 (6): 1- 5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|