Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (7): 1410-1417    DOI: 10.3785/j.issn.1008-973X.2023.07.016
土木工程     
流变性土排桩地基的禁振带隙
杨华中1(),赵建昌1,*(),余云燕1,王立安2
1. 兰州交通大学 土木工程学院,甘肃 兰州 730070
2. 兰州交通大学 铁道技术学院,甘肃 兰州 730070
Vibration suppression band gap of rheological soil row piles foundation
Hua-zhong YANG1(),Jian-chang ZHAO1,*(),Yun-yan YU1,Li-an WANG2
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. School of Railway Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
 全文: PDF(1321 KB)   HTML
摘要:

基于时间依赖性模量推导流变性土的动阻尼表达式,构建桩-土周期结构的连续介质模型,利用多重散射法计算桩-土周期系统的能带结构和带隙. 通过算例分析,分析流变性土排桩地基中剪切波的带隙特征及参数影响. 结果表明,流变性土的阻尼比随频率发生非单调性变化,初始和最终状态的模量比决定阻尼比的幅值,而松弛时间决定阻尼比随频率的变化速率. 土体的流变性导致实际工程中排桩地基的带隙频率高于理论值,且带宽减小,减弱了排桩的隔振效果,消除桩周土的流变性将有利于排桩发挥隔振作用.

关键词: 流变性土排桩周期结构多重散射法禁振带隙    
Abstract:

The dynamic damping expression of rheological soil was derived based on the time-dependent modulus, and the continuum model of the pile-soil periodic structure was constructed. The energy band structure and band gap of the pile-soil periodic system were calculated by using the multiple scattering method. The band gap characteristics and parameter influence of shear wave in rheological soil pile foundation were analyzed through an example. Results showed that the damping ratio of rheological soil changed non-monotonously with frequency. The amplitude of damping ratio was determined by the initial and final modulus ratio, and the change rate of damping ratio with frequency was determined by the relaxation time. The rheological properties of the soil lead to a higher frequency of band gaps in the actual engineering of row pile foundations than the theoretical value, and the bandwidth decreases, weakening the vibration isolation effect of row piles. Eliminating the rheological properties of the soil around the piles will be conducive to the vibration isolation effect of row piles.

Key words: rheological soil    row pile    periodic structure    multiple scattering method    vibration suppression band gap
收稿日期: 2022-07-07 出版日期: 2023-07-17
CLC:  TU 470  
基金资助: 甘肃省自然科学基金资助项目(22JR11RA155);兰州交通大学青年科学基金资助项目(1200061136)
通讯作者: 赵建昌     E-mail: 419403362@qq.com;13609382011@163.com
作者简介: 杨华中(1979—),男,博士生,从事结构工程研究. orcid.org/0009-0004-8081-7711. E-mail: 419403362@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨华中
赵建昌
余云燕
王立安

引用本文:

杨华中,赵建昌,余云燕,王立安. 流变性土排桩地基的禁振带隙[J]. 浙江大学学报(工学版), 2023, 57(7): 1410-1417.

Hua-zhong YANG,Jian-chang ZHAO,Yun-yan YU,Li-an WANG. Vibration suppression band gap of rheological soil row piles foundation. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1410-1417.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.016        https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1410

图 1  桩-土周期结构的分析模型
图 2  阻尼比随频率的变化曲线
图 3  第一不可约布里渊域
图 4  本文退化解与文献[26]解的对比图
参数 参数值
ρs/(kg·m?3) 1 900
μ0/ MPa 30
vs 0.25
ρp/(kg·m?3) 2 500
λp/GPa 8.3
μp/GPa 12.5
r0/m 0.65
a/m 2
表 1  土和桩的计算参数表
图 5  常阻尼模型与流变模型的带隙结果对比
η (ξd)max Rayleigh模型 流变模型(τ = 0.001 s)
[fl, fu] fu? fl [fl, fu] fu? fl
1 0 [0.619, 0.730] 0.111 [0.619, 0.730] 0.111
1.2 0.083 [0.620, 0.731] 0.111 [0.704, 0.781] 0.077
1.4 0.149 [0.621, 0.732] 0.111 [0.719, 0.788] 0.069
2.0 0.283 [0.626, 0.737] 0.111 [0.760, 0.809] 0.049
10 0.606 [0.648, 0.759] 0.111 [0.915, 1.096] 0.181
100 0.697 [0.657, 0.765] 0.108 [1.165, 1.608] 0.443
200 0.702 [0.659, 0.766] 0.107 [1.383, 1.790] 0.407
表 2  不同阻尼比取值下的带隙结果
图 6  带隙随模量比的变化曲线
图 7  松弛时间对带隙的影响
图 8  带隙随桩基填充率的变化曲线
1 ALEXANDROS L, YIANNIS T, PRODROMOS N Efficient mitigation of high-speed trains induced vibrations of railway embankments using expanded polystyrene blocks[J]. Transportation Geotechnics, 2020, 22 (5): 3- 12
2 王立安, 赵建昌, 王作伟 汽车行驶诱发地表振动的解析研究[J]. 力学学报, 2020, 41 (5): 48- 54
WANG Li-an, ZHAO Jian-chang, WANG Zuo-wei Analytical research on surface vibration induced by vehicle driving[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 41 (5): 48- 54
3 MA M, JIANG B L, GAO J, et al Experimental study on attenuation zone of soil-periodic piles system[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105738
doi: 10.1016/j.soildyn.2019.105738
4 温雅歌. 桩-饱和土周期结构在环境减振中的应用[D]. 北京: 北京交通大学, 2015.
WEN Ya-ge. Application of pile-saturated soil periodic structure in environmental vibration reduction [D]. Beijing: Beijing Jiaotong University, 2015.
5 PU X B, SHI Z F Surface-wave attenuation by periodic pile barriers in layered soils[J]. Construction and Building Materials, 2018, 188 (8): 177- 187
6 LIANG J W, HAN B, TODOROVSKA M I, et al 2D dynamic structure-soil-structure interaction for twin buildings in layered half-space II: incident SV-waves[J]. Soil Dynamics and Earthquake Engineering, 2018, 113 (8): 356- 390
7 SHI Z F, WEN Y G, MENG Q J Propagation attenuation of plane waves in saturated soil by pile barriers[J]. International Journal of Geomechanics, 2017, 17 (9): 04017053
doi: 10.1061/(ASCE)GM.1943-5622.0000963
8 MENG Q J, SHI Z F Vibration isolation of plane waves by periodic pipe pile barriers in saturated soil[J]. Journal of Aerospace Engineering (ASCE), 2019, 32 (1): 04018114
doi: 10.1061/(ASCE)AS.1943-5525.0000938
9 孟庆娟, 石志飞 基于周期理论和COMSOL PDE的排桩减振特性研究[J]. 岩土力学, 2018, 39 (11): 4251- 4260
MENG Qing-juan, SHI Zhi-fei Study on vibration reduction characteristics of piles based on period theory and COMSOL PDE[J]. Rock and Soil Mechanics, 2018, 39 (11): 4251- 4260
10 孟庆娟, 乔京生 饱和土中周期性排桩隔离体波的性能研究[J]. 振动与冲击, 2020, 39 (24): 179- 186
MENG Qing-juan, QIAO Jing-sheng Study on the performance of periodic piles to isolate body waves in saturated soil[J]. Journal of Vibration and Shock, 2020, 39 (24): 179- 186
doi: 10.13465/j.cnki.jvs.2020.24.025
11 PU X, SHI Z, XIANG H Feasibility of ambient vibration screening by periodic geo-foam-filled trenches[J]. Soil Dynamics and Earthquake Engineering, 2018, 104 (10): 228- 235
12 MENG L K, CHENG Z B, SHI Z F Vibration mitigation in saturated soil by periodic in-filled pipe pile barriers[J]. Computers and Geotechnics, 2020, 124 (8): 103633
13 陈晓斌, 王业顺, 唐孟雄, 等 周期性四组元局域共振桩带隙特征及隔振性能研究[J]. 岩土力学, 2022, 43 (1): 110- 118
CHEN Xiao-bin, WANG Ye-shun, TANG Meng-xiong, et al Study on band gap characteristics and vibration isolation of local resonance pile with periodic four component[J]. Rock and Soil Mechanics, 2022, 43 (1): 110- 118
doi: 10.16285/j.rsm.2021.0727
14 KABBAJ M, TAVENAS F, LEROUEIL S In situ and laboratory stress-strain relationships[J]. Géotechnique, 1988, 38 (1): 83- 100
15 LE T M, FATAHI B, KHABBAZ H Viscous behaviour of soft clay and inducing factors[J]. Geotechnical and Geological Engineering, 2012, 30 (5): 1069- 1083
doi: 10.1007/s10706-012-9535-0
16 蔡袁强, 梁旭, 郑灶锋, 等 半透水边界的黏弹性土层在循环荷载下的一维固结[J]. 土木工程学报, 2003, 36 (8): 86- 90
CAI Yuan-qiang, LIANG Xu, ZHENG Zao-feng, et al One-dimensional consolidation of viscoelastic soil layer with semi-permeable boundaries under cyclic loading[J]. China Civil Engineering Journal, 2003, 36 (8): 86- 90
doi: 10.3321/j.issn:1000-131X.2003.08.016
17 曾庆有, 周健, 屈俊童 考虑应力应变时间效应的桩基长期沉降计算方法[J]. 岩土力学, 2005, 26 (8): 1283- 1287
ZENG Qing-you, ZHOU Jian, QU Jun-tong Method for long-term settlement prediction of pile-foundation in consideration of time effect of stress-strain relationship[J]. Rock and Soil Mechanics, 2005, 26 (8): 1283- 1287
doi: 10.3969/j.issn.1000-7598.2005.08.019
18 艾智勇, 王禾慕, 金晶 层状分数阶黏弹性饱和地基与梁共同作用的时效研究[J]. 力学学报, 2021, 53 (5): 1402- 1411
AI Zhi-yong, WANG He-mu, JIN Jing Aging study on the interaction between layered fractional viscoelastic saturated foundation and beam[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (5): 1402- 1411
doi: 10.6052/0459-1879-20-447
19 AI Z Y, ZHAO Y Z, CHENG Y C Time-dependent response of laterally loaded piles and pile groups embedded in transversely isotropic saturated viscoelastic soils[J]. Computers and Geotechnics, 2020, 128 (12): 103815
20 何利军, 孔令伟, 吴文军, 等 采用分数阶导数描述软黏土蠕变的模型[J]. 岩土力学, 2011, 32 (Supple.2): 239- 243
HE Li-jun, KONG Ling-wei, WU Wen-jun, et al A description of creep model for soft soil with fractional derivative[J]. Rock and Soil Mechanics, 2011, 32 (Supple.2): 239- 243
doi: 10.16285/j.rsm.2011.s2.022
21 汪磊, 李林忠, 徐永福, 等 半透水边界下分数阶黏弹性饱和土一维固结特性分析[J]. 岩土力学, 2018, 39 (11): 4142- 4148
WANG Lei, LI Lin-zhong, XU Yong-fu, et al Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary[J]. Rock and Soil Mechanics, 2018, 39 (11): 4142- 4148
doi: 10.16285/j.rsm.2017.0659
22 吴奎, 邵珠山, 秦溯 流变岩体中让压支护作用下隧道力学行为研究[J]. 力学学报, 2020, 52 (3): 890- 900
WU Kui, SHAO Zhu-shan, QIN Su Study on mechanical behavior of tunnel under the action of yielding support in rheological rock mass[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (3): 890- 900
23 张婉洁, 牛江川, 申永军, 等 含分数阶Bingham模型的阻尼减振系统时滞半主动控制[J]. 力学学报, 2022, 54 (1): 173- 183
ZHANG Wan-jie, NIU Jiang-chuan, SHEN Yong-jun, et al Time-delay semi-active control of damping and vibration reduction system with fractional Bingham model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (1): 173- 183
doi: 10.6052/0459-1879-21-467
24 LAKERS R S. Viscoelastic materials [M]. New York: Cambridge University Press, 2009.
25 PAO Y H, MAO C C. Diffraction of elastic waves and dynamic stress concentration [M]. California: Rand Press, 1973.
26 HUANG J K, SHI Z F Vibration reduction of plane waves using periodic in-filled pile barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 2015, 141 (6): 04015018
doi: 10.1061/(ASCE)GT.1943-5606.0001301
27 郑长杰, 何育泽, 丁选明 下卧基岩黏弹性地基上刚性条形基础竖向振动响应研究[J]. 岩土力学, 2022, 43 (6): 1434- 1442
ZHENG Chang-jie, HE Yu-ze, DING Xuan-ming Vertical vibration response of rigid strip footings on a viscoelastic soil layer overlying bedrock[J]. Rock and Soil Mechanics, 2022, 43 (6): 1434- 1442
[1] 许忠源,徐长节,陈冉,蔡袁强. 涌潮冲击排桩式丁坝的三维数值模拟[J]. J4, 2014, 48(3): 504-513.
[2] 侯键,夏唐代,孙苗苗,孔祥冰. 任意排列的固定刚性桩屏障对SH波的多重散射[J]. J4, 2012, 46(7): 1269-1274.
[3] 陈海军 徐长节 蔡袁强 宣伟丽. 涌潮冲击排桩式丁坝的数值模拟[J]. J4, 2007, 41(1): 171-175.