Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (8): 1474-1480    DOI: 10.3785/j.issn.1008-973X.2020.08.004
机械工程     
注射成形中聚合物熔体黏度的在线测量装置
张剑锋1(),赵朋1,*(),周宏伟2,傅建中1,陈子辰1
1. 浙江大学,浙江省三维打印工艺与装备重点实验室,浙江 杭州 310027
2. 泰瑞机器股份有限公司,浙江 杭州 310018
On-line measurement device for viscosity of polymer melt during injection molding process
Jian-feng ZHANG1(),Peng ZHAO1,*(),ZHOU Hong-wei 2,Jian-zhong FU1,Zi-chen CHEN1
1. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
2. Tederic Machinery Co. Ltd, Hangzhou 310018, China
 全文: PDF(1102 KB)   HTML
摘要:

设计并制造在线测量注射成形过程中聚合物熔体黏度变化的装置. 在测量装置中,非等温高剪切流变模具的型腔结构设计成厚度为1 mm或2 mm的狭缝,底部不封口,维持熔体的持续流动;在流动中心线上沿流动方向布置一组压力传感器实时检测聚合物熔体在模具型腔中的压力变化情况,并使用模温机控制模具温度. 使用PXIe采集系统采集、显示、记录实验数据. 实验通过压力传感器测量得到不同位置熔体压力,根据修正的牛顿黏性定律计算熔体黏度,并与Cross-WLF模型的理论值进行对比. 实验结果表明:所设计的模具安全可靠,可获得低密度聚乙烯(LDPE)熔体在注射成形过程中熔体压力的变化情况,从而可以计算出材料在成形过程中的表观黏度演化情况. 实验测量结果与理论值在剪切速率大于500 s?1的高剪切速度范围内较吻合,误差均在18%以内,最小为4%. 该装置能满足真实成形条件下聚合物熔体信息的在线检测要求.

关键词: 聚合物注射成形流变模具黏度在线检测    
Abstract:

A device for measuring the viscosity of the polymer melt during injection molding process was designed and manufactured. The cavity of this non-isothermal and high-shear rate rheological mold is designed as a slit with a thickness of 1 mm or 2 mm. The bottom is un-sealed and the continuous flow of polymer melt can be maintained. The pressure sensors are mounted along the central line of flow direction, thus the melt pressure in the mold cavity can be real time detected. The mold temperature is controlled by the mold temperature machine. A PXIe acquisition card is utilized to acquire, display and record the experimental data. The melt pressure at different locations is measured by pressure sensors. The melt viscosity was calculated according to the corrected law of Newton's shear stress theorem and compared with the theoretical value of the Cross-WLF model. Results show that the designed mold is safe and reliable, and the melt pressure of the low density polyethylene (LDPE) can be detected during the injection molding process. Further, the apparent viscosity evolution of the material during injection molding process can be calculated. Experimental results agree well with the theoretical values in the high shear rate range with the shear rate greater than 500 s?1, the error is within 18%, and the minimum is 4%. This proposed device can realize the online measurement of the melt information during injection molding process.

Key words: polymer    injection molding    rheology    mold    viscosity    on-line measurement
收稿日期: 2019-07-04 出版日期: 2020-08-28
CLC:  TQ 320  
基金资助: 国家自然科学基金资助项目(51635006,51875519);浙江省自然科学基金重点资助项目(LZ18E050002);浙江省重点研发计划资助项目(2020C01113)
通讯作者: 赵朋     E-mail: 21725029@zju.edu.cn;pengzhao@zju.edu.cn
作者简介: 张剑锋(1994—),男,硕士生,从事聚合物注射成形研究. orcid.org/0000-0001-7362-1252. E-mail: 21725029@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张剑锋
赵朋
周宏伟
傅建中
陈子辰

引用本文:

张剑锋,赵朋,周宏伟,傅建中,陈子辰. 注射成形中聚合物熔体黏度的在线测量装置[J]. 浙江大学学报(工学版), 2020, 54(8): 1474-1480.

Jian-feng ZHANG,Peng ZHAO,ZHOU Hong-wei ,Jian-zhong FU,Zi-chen CHEN. On-line measurement device for viscosity of polymer melt during injection molding process. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1474-1480.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.004        http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1474

图 1  流变模具型腔结构与压力传感器布置示意图
图 2  流变模具总体结构示意图
图 3  聚合物熔体黏度检测系统的总体架构示意图
图 4  模温机设置100 °C油温时,不同注射速度下压力变化情况
图 5  模温机设置120 °C油温时,不同注射速度下压力变化情况
图 6  不同温度和注射速度下测点压力峰值的变化情况
图 7  型腔厚度为1 mm时不同模具温度下熔体的黏度曲线
图 8  型腔厚度为2 mm时不同模具温度下熔体的黏度曲线
图 9  型腔厚度为1 mm时修正后的熔体黏度曲线
图 10  型腔厚度2 mm时修正后的熔体黏度曲线
1 ZHANG J F, ZHAO P, ZHAO Y, et al On-line measurement of cavity pressure during injection molding via ultrasonic investigation of tie bar[J]. Sensors and Actuators A: Physical, 2018, 285 (1): 118- 126
2 ZHOU H. Computer modeling for injection molding: simulation, optimization, and control [M]. Hoboken: Wiley, 2013.
3 HSU C L, TURNG L S, OSSWALD T A, et al Effect of pressure and supercritical fluid on melt viscosity of LDPE in conventional and microcellular injection molding[J]. International Polymer Processing, 2012, 27 (1): 18- 24
doi: 10.3139/217.2493
4 YAO D, CHEN S C, KIM B H Rapid thermal cycling of injection molds: an overview on technical approaches and applications[J]. Advances in Polymer Technology, 2010, 27 (4): 233- 255
5 GAO R X, TANG X, GORDON G, et al Online product quality monitoring through in-process measurement[J]. CIRP Annals, 2014, 63 (1): 493- 496
doi: 10.1016/j.cirp.2014.03.041
6 赵丽娟, 许琪, 姚燕青, 等 超声波在线检测高分子材料在流变仪中的挤出行为: I[J]. 高分子材料科学与工程, 2013, (8): 146- 149
ZHAO Li-juan, XU Qi, YAO Yan-qing, et al On-line detection of extrusion behavior of polymer materials in rheometer by ultrasonic method: I[J]. Polymer Materials Science and Engineering, 2013, (8): 146- 149
7 赵丽娟, 钟琴, 庄红军, 等 超声波在线检测聚合物材料在流变仪中的挤出行为: Ⅱ[J]. 高分子材料科学与工程, 2014, (4): 106- 109
ZHAO Li-juan, ZHONG Qin, ZHUANG Hong-jun, et al On-line detection of extrusion behavior of polymer materials in rheometer by ultrasonic method: Ⅱ[J]. Polymer Materials Science and Engineering, 2014, (4): 106- 109
8 K?PPLMAYR T, LUGER H J, BURZIC I, et al A novel online rheometer for elongational viscosity measurement of polymer melts[J]. Polymer Testing, 2016, 50: 208- 215
doi: 10.1016/j.polymertesting.2016.01.012
9 LEWANDOWSKI K, PISZCZEK K, ZAJCHOWSKI S, et al Rheological properties of wood polymer composites at high shear rates[J]. Polymer Testing, 2016, 51: 58- 62
doi: 10.1016/j.polymertesting.2016.02.004
10 ZATLOUKAL M Measurements and modeling of temperature-strain rate dependent uniaxial and planar extensional viscosities for branched LDPE polymer melt[J]. Polymer, 2016, 104: 258- 267
doi: 10.1016/j.polymer.2016.04.053
11 KLAIBER F. Design, construction and analysis of a high pressure slit rheometer [D]. Wisconsin: University of Wisconsin-Madison, 2005.
12 严波, 李阳, 赵朋, 等 基于改进有限体积法的三维注塑成型充模过程数值模拟[J]. 机械工程学报, 2015, 51 (10): 25- 32
YAN Bo, LI Yang, ZHAO Peng, et al 3D simulation of filling stage of plastic injection molding based on improved finite volume method[J]. Journal of Mechanical Engineering, 2015, 51 (10): 25- 32
doi: 10.3901/JME.2015.10.025
13 赵朋, 赵耀, 严波, 等 注射成型中聚合物剪切诱导结晶行为的三维模拟[J]. 化工学报, 2017, 68 (11): 4359- 4366
ZHAO Peng, ZHAO Yao, YAN Bo, et al Three-dimensional simulation of shear-induced crystallization for polymers during injection molding process[J]. CIESC Journal, 2017, 68 (11): 4359- 4366
[1] 张勤玲,黄志义. 高温高湿盐环境下SBS改性沥青胶浆的高温性能[J]. 浙江大学学报(工学版), 2021, 55(1): 38-45.
[2] 费云,蒙涛,金仲和. 皮纳卫星姿控系统分层式故障检测[J]. 浙江大学学报(工学版), 2020, 54(4): 824-832.
[3] 于露,金龙哲,徐明伟,刘建国. 基于HHT分解光电容积脉搏波信号的人体血液流变信息评估[J]. 浙江大学学报(工学版), 2020, 54(2): 340-347.
[4] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[5] 郝天泽,肖华平,刘书海,谷建峰. 形状记忆聚合物在4D打印技术下的研究及应用[J]. 浙江大学学报(工学版), 2020, 54(1): 1-16.
[6] 季宪泰,文世峰,魏青松,周燕,陈志平. 淬火处理对激光选区熔化成形S136组织与性能的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 664-670.
[7] 樊鹏玄, 陈务军, 赵兵, 胡建辉, 张大旭, 房光强, 彭福军. Prony级数形式的形状记忆聚合物有限应变黏弹性本构模型[J]. 浙江大学学报(工学版), 2018, 52(6): 1194-1200.
[8] 陈昭晖, 倪一清. 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报(工学版), 2017, 51(8): 1551-1558.
[9] 康志军, 黄润秋, 卫彬, 谭勇. 上海软土地区某逆作法地铁深基坑变形[J]. 浙江大学学报(工学版), 2017, 51(8): 1527-1536.
[10] 欧阳青, 李赵春, 郑佳佳, 王炅. 多阶并联式磁流变缓冲器可控性分析[J]. 浙江大学学报(工学版), 2017, 51(5): 961-968.
[11] 龚俊辉, 陈怡璇, 王志荣, 蒋军成, 李劲, 周洋. 非碳化聚合物两种热流吸收模式热解机理[J]. 浙江大学学报(工学版), 2017, 51(4): 784-791.
[12] 韩旭,毛飞燕,黄群星,池涌,严建华. 储运油泥中非油相组分对表观黏度的影响分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2064-2068.
[13] 黄志义, 胡晓宇, 王金昌, 章俊屾. 高黏沥青中高温感温性评价方法的适用性[J]. 浙江大学学报(工学版), 2015, 49(8): 1448-1454.
[14] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[15] 周锋,顾临怡,罗高生. 用于水下推进系统的先导比例减压阀的稳定性[J]. 浙江大学学报(工学版), 2015, 49(11): 2047-2053.