Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (11): 2300-2308    DOI: 10.3785/j.issn.1008-973X.2025.11.009
机械工程、能源工程     
多温区电场条件下磷酸铁锂电池机电特性
朱鸿儒(),陈自强*(),依平
上海交通大学 海洋工程国家重点实验室,上海 200240
Mechanical and electrochemical characteristic of LiFePO4 battery under multi-temperature and electric field condition
Hongru ZHU(),Ziqiang CHEN*(),Ping YI
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1740 KB)   HTML
摘要:

为了引入电池表面原位膨胀力拓展电池荷电状态(SOC)估计的输入数据维度从而提高估计精度,开展磷酸铁锂电池在不同温度和电场下的机械特性与电化学特性研究,包括设计并搭建电池多物理场信号采集台架,开展不同温度下的开路电压(OCV)测试、混合功率脉冲测试(HPPC)、表面原位膨胀力测试,分析电池的机械与电化学特性及其在不同工况下的多物理场行为. 结果表明,电池表面原位膨胀力随着SOC增加先增大后减小再增大,较开路电压对SOC的灵敏度更高. 膨胀力曲线的极值点位置受温度的影响较小,随温度升高有微小延后;受电流的影响较大,随电流增大明显提前并逐渐消失. 电池内阻随温度升高而明显下降,开路电压曲线在不同温度下具有较高的一致性. 实验研究展示了膨胀力信号在电池SOC估计应用中的潜力,为基于膨胀力信号的电池SOC估计提供理论基础和数据支持.

关键词: 磷酸铁锂电池机械信号表面原位膨胀力荷电状态(SOC)    
Abstract:

The mechanical and electrochemical characteristics of LiFePO4 battery under different temperature and electric field were analyzed in order to introduce the in-situ surface expansion force as an additional input variable for the estimation of state of charge (SOC) and thus improve the estimation accuracy. A multi-physics signal acquisition platform was designed and constructed. Open-circuit voltage (OCV) tests, hybrid pulse power characterization (HPPC) tests, and in-situ surface expansion force measurements were conducted at different temperature. The mechanical and electrochemical characteristics of battery and its multi-physics responses under various operating conditions were analyzed. Results show that the in-situ surface expansion force first increases, then decreases, and then increases again as SOC rises, and it is more sensitive to SOC than OCV. The extrema of the expansion force curves are slightly affected by temperature, showing small delays with increasing temperature. They are strongly affected by current, occurring earlier and gradually disappearing as the current increases. The internal resistance decreases significantly with increasing temperature. The OCV curves exhibit high consistency across different temperature. The experimental results demonstrate that the expansion force signal has potential in SOC estimation and provide theoretical foundation and data support for SOC estimation methods based on expansion force signals.

Key words: LiFePO4 battery    mechanical signal    surface in-situ expansion force    state of charge (SOC)
收稿日期: 2024-10-30 出版日期: 2025-10-30
:  TM 912  
通讯作者: 陈自强     E-mail: agoniii@sjtu.edu.cn;chenziqiang@sjtu.edu.cn
作者简介: 朱鸿儒(2001—),男,硕士生,从事锂离子电池荷电状态估计的研究. orcid.org/0009-0006-9220-1193. E-mail:agoniii@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
朱鸿儒
陈自强
依平

引用本文:

朱鸿儒,陈自强,依平. 多温区电场条件下磷酸铁锂电池机电特性[J]. 浙江大学学报(工学版), 2025, 59(11): 2300-2308.

Hongru ZHU,Ziqiang CHEN,Ping YI. Mechanical and electrochemical characteristic of LiFePO4 battery under multi-temperature and electric field condition. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2300-2308.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.009        https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2300

Vnom/VQnom/(A·h)(IrateC?1)/h?1Vchgmax/VVdismin/V
3.223?0.5~23.652.5
表 1  用于多温度下机械与电化学特性实验的电池的基本参数
图 1  电池表面膨胀力采集夹具
图 2  膨胀力测量的可重复性测试
图 3  多温度下电池机械与电化学特性的实验台架
图 4  磷酸铁锂电池的内阻曲线
图 5  磷酸铁锂电池的开路电压曲线
图 6  磷酸铁锂电池的膨胀力曲线
图 7  不同电流充放电时磷酸铁锂电池的膨胀力曲线
图 8  不同SOC下磷酸铁锂电池静置期的膨胀力恢复
图 9  不同SOC下磷酸铁锂电池静置期的膨胀力变化率
图 10  磷酸铁锂电池的稳定膨胀力曲线
图 11  不同温度下磷酸铁锂电池的内阻曲线
图 12  不同温度下磷酸铁锂电池的OCV曲线
图 13  不同温度下磷酸铁锂电池的充放电膨胀力曲线
图 14  不同温度下磷酸铁锂电池的稳定膨胀力曲线
1 卢地华, 周胜增, 陈自强 适用于无人水下潜航器电池管理系统的SOC-SOH联合估计[J]. 浙江大学学报: 工学版, 2024, 58 (5): 1080- 1090
LU Dihua, ZHOU Shengzeng, CHEN Ziqiang Joint SOC-SOH estimation for UUV battery management system[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (5): 1080- 1090
2 GAO Y Z, ZHU C, ZHANG X, et al Implementation and evaluation of a practical electrochemical-thermal model of lithium-ion batteries for EV battery management system[J]. Energy (Oxford), 2021, 221: 119688
doi: 10.1016/j.energy.2020.119688
3 柳新, 陈自强 基于PNGV模型的锂离子电池荷电状态估计[J]. 装备环境工程, 2023, 20 (11): 81- 90
LIU Xin, CHEN Ziqiang State of charge estimation of lithium-ion batteries based on PNGV model[J]. Equipment Environmental Engineering, 2023, 20 (11): 81- 90
4 雷克兵, 陈自强 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1978- 1985
LEI Kebing, CHEN Ziqiang Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1978- 1985
5 陈琦龙, 孙建国, 陈凯, 等 纯电动汽车电池管理系统国内外研究现状和发展趋势[J]. 现代车用动力, 2022, (1): 1- 6
CHEN Qilong, SUN Jianguo, CHEN Kai, et al Research status and development trend of battery management system for pure electric vehicle home and abroad[J]. Modern Vehicle Power, 2022, (1): 1- 6
doi: 10.3969/j.issn.1671-5446.2022.01.001
6 夏权, 任羿, 孙博, 等 动态工况下锂电池组多物理场仿真与退化分析[J]. 装备环境工程, 2023, 20 (6): 108- 116
XIA Quan, REN Yi, SUN Bo, et al Multi-physical simulation and degradation analysis of lithium-ion battery pack under dynamic conditions[J]. Equipment Environmental Engineering, 2023, 20 (6): 108- 116
7 ZHANG C, LI K, DENG J, et al Improved real-time state-of-charge estimation of LiFePO4 battery based on a novel thermoelectric model[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (1): 654- 663
doi: 10.1109/TIE.2016.2610398
8 LI Y, WEI Z, XIONG B, et al Adaptive ensemble-based electrochemical-thermal degradation state estimation of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (7): 6984- 6996
doi: 10.1109/TIE.2021.3095815
9 陈龙, 夏权, 任羿, 等 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11 (7): 2316- 2323
CHEN Long, XIA Quan, REN Yi, et al Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields[J]. Energy Storage Science and Technology, 2022, 11 (7): 2316- 2323
10 SUN H G, WANG X H, TOSSAN B, et al Three-dimensional thermal modeling of a lithium-ion battery pack[J]. Journal of Power Sources, 2012, 206: 349- 356
doi: 10.1016/j.jpowsour.2012.01.081
11 顾延光. 基于电化学-力耦合模型的锂离子电池扩散应力及残余应力的研究分析 [D]. 镇江: 江苏大学, 2021.
GU Yanguang. Diffusion stress and residual stress analysis of Li-ion battery based on electrochemical-stress coupling mode [D]. Zhenjiang: Jiangsu University, 2021.
12 王旸, 岳钒, 黄晓东 全固态锂离子电池的多物理场建模与仿真技术研究[J]. 电子器件, 2021, 44 (1): 1- 6
WANG Yang, YUE Fan, HUANG Xiaodong Research on multiphysics modeling and simulation technology of all-solid-state Lithium ion battery[J]. Chinese Journal of Electron Devices, 2021, 44 (1): 1- 6
doi: 10.3969/j.issn.1005-9490.2021.01.001
13 马德正, 李培超, 岳飞龙, 等 锂离子电池电化学-热-力耦合数值模拟及分析[J]. 农业装备与车辆工程, 2021, 59 (11): 43- 47
MA Dezheng, LI Peichao, YUE Feilong, et al Numerical simulation and analysis of electrochemical-thermal-mechanical coupling for lithium ion battery[J]. Agricultural Equipment and Vehicle Engineering, 2021, 59 (11): 43- 47
doi: 10.3969/j.issn.1673-3142.2021.11.010
14 FIGUEROA-SANTOS M A, SIEGEL J B, STEFANOPOULOU A G Leveraging cell expansion sensing in state of charge estimation: practical considerations[J]. Energies (Basel), 2020, 13 (10): 2653
doi: 10.3390/en13102653
15 LIN C J, MAO J B, ZHANG X T, et al A study of expansion force propagation characteristics and early warning feasibility for the thermal diffusion process of lithium-ion battery modules[J]. Journal of Energy Storage, 2024, 98 (PA): 113076
16 LI K J, CHEN L, HAN X B, et al Early warning for thermal runaway in lithium-ion batteries during various charging rates: Insights from expansion force analysis[J]. Journal of Cleaner Production, 2024, 457: 142422
doi: 10.1016/j.jclepro.2024.142422
17 CHUANG Q, YAN H T, YANG J, et al Study on the characteristics of thermal runaway expansion force of LiNi0.5Co0.2Mn0.3O2/graphite lithium-ion batteries with different SOCs[J]. Electrochimica Acta, 2024, 495: 144448
doi: 10.1016/j.electacta.2024.144448
18 ZHAO J Y, HU Z Y, WANG H, et al A multi-scale SOC estimation method for lithium-ion batteries incorporating expansion force[J]. Journal of Energy Storage, 2024, 82: 110481
doi: 10.1016/j.est.2024.110481
19 JIANG Y H, XU J, LIU M M, et al An electromechanical coupling model-based state of charge estimation method for lithium-ion pouch battery modules[J]. Energy (Oxford), 2022, 259: 125019
doi: 10.1016/j.energy.2022.125019
20 刘萍, 曲新波, 李加林 大容量磷酸铁锂动力电池膨胀力研究[J]. 电源技术, 2021, 45 (6): 709- 710
LIU Ping, QU Xinbo, LI Jialin Research of swelling force of high capacity LFP cell[J]. Chinese Journal of Power Sources, 2021, 45 (6): 709- 710
21 LI W, WU X, WANG K, et al Insights into the swelling force in commercial LiFePO4 prismatic cell[J]. Journal of Power Sources, 2024, 622: 235330
doi: 10.1016/j.jpowsour.2024.235330
22 LI Y K, CHUANG W, SHENG Y M, et al Swelling force in lithium-ion power batteries[J]. Industrial and Engineering Chemistry Research, 2020, 59 (27): 12313- 12318
doi: 10.1021/acs.iecr.0c01035
23 DEES W D, RODRIGUES F T M, KALAGA K, et al Apparent increasing lithium diffusion coefficient with applied current in graphite[J]. Journal of the Electrochemical Society, 2020, 167 (12): 120528
doi: 10.1149/1945-7111/abaf9f
[1] 卢地华,周胜增,陈自强. 适用于无人水下潜航器电池管理系统的SOC-SOH联合估计[J]. 浙江大学学报(工学版), 2024, 58(5): 1080-1090.
[2] 董红召,王桢,张楠,佘翊妮,林盈盈. 电动公交车电池荷电状态的Seq2Seq预测方法[J]. 浙江大学学报(工学版), 2023, 57(10): 2051-2059.
[3] 董浩,毛玲,屈克庆,赵晋斌,李芬. 基于温度和SOC的锂离子电池特征提取及SOH估计[J]. 浙江大学学报(工学版), 2023, 57(7): 1470-1478.
[4] 张勇,潘神功,刘水长,毛凤朝,王青妤,刘赫,尹艺霏. 全特征扰流元电池液冷板传热优化与实验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1157-1164.
[5] 夏雪,赵震,张晋杰,唐亮. 车用圆柱锂电池及模组的机械完整性[J]. 浙江大学学报(工学版), 2021, 55(11): 2134-2141.
[6] 雷克兵,陈自强. 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报(工学版), 2021, 55(10): 1978-1985.
[7] 潘斌,董栋,钱东培,钮树强,刘双宇,姜银珠. 磷酸铁锂电池内阻分量快速检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 189-194.
[8] 吴佳铭,陈自强. 可变低温环境锂电池组内部短路故障诊断[J]. 浙江大学学报(工学版), 2020, 54(7): 1433-1439.