Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (7): 1470-1478    DOI: 10.3785/j.issn.1008-973X.2023.07.022
电气工程     
基于温度和SOC的锂离子电池特征提取及SOH估计
董浩(),毛玲*(),屈克庆,赵晋斌,李芬
上海电力大学 电气工程学院,上海 200090
Factor extraction and SOH estimation of lithium-ion battery based on temperature and SOC
Hao DONG(),Ling MAO*(),Ke-qing QU,Jin-bin ZHAO,Fen LI
College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
 全文: PDF(1630 KB)   HTML
摘要:

为了解决电池日常使用过程中数据量获取不足和健康因子提取难的问题,通过分析不同温度下锂离子电池的荷电状态(SOC)与充电电压的变化曲线,提出基于温度和SOC的锂离子电池健康因子提取及健康状态(SOH)在线估计的方法. 在电池的实际充电过程中,根据环境温度差异选取电压和电流作为健康因子. 利用遗传-爬山算法优化极限学习机的网络参数,建立健康因子和SOH的映射关系,实现SOH在线估计. 使用9组NASA电池老化数据进行验证,结果表明,本文方法具有估计精度高、环境温度适应性强的优点.

关键词: 日常SOC遗传-爬山算法极限学习机(ELM)健康因子SOH在线估计    
Abstract:

The changing curve of the state of charge (SOC) and charging voltage of lithium-ion batteries (LIB) at different temperatures was analyzed in order to solve the problems of insufficient data acquisition and difficulty in extracting health factors (HFs) during the daily use of LIB. A method for LIB HFs extraction and online estimation of state of health (SOH) considering temperature and SOC was proposed. The charging voltage and current were selected as HFs according to the ambient temperature difference during the actual charging process of the battery. Then the network parameters of the extreme learning machine were optimized by the genetic-hill climbing algorithm, and the mapping relationship between the HFs and the SOH was established to realize the online SOH estimation. Nine groups of NASA LIB aging data were used for verification. Results show that the proposed method has the advantages of high estimation accuracy and strong adaptability for ambient temperature.

Key words: daily SOC    genetic-hill climbing algorithm    extreme learning machine (ELM)    health factor    online estimation of SOH
收稿日期: 2022-07-21 出版日期: 2023-07-17
CLC:  TM 912  
基金资助: 国家自然科学基金资助项目(52177184)
通讯作者: 毛玲     E-mail: 1132566511@qq.com;maoling2290@shiep.edu.cn
作者简介: 董浩(1997—),男,硕士生,从事研究锂离子电池状态估计的研究. orcid.org/0000-0001-6477-5372. E-mail: 1132566511@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
董浩
毛玲
屈克庆
赵晋斌
李芬

引用本文:

董浩,毛玲,屈克庆,赵晋斌,李芬. 基于温度和SOC的锂离子电池特征提取及SOH估计[J]. 浙江大学学报(工学版), 2023, 57(7): 1470-1478.

Hao DONG,Ling MAO,Ke-qing QU,Jin-bin ZHAO,Fen LI. Factor extraction and SOH estimation of lithium-ion battery based on temperature and SOC. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1470-1478.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.022        https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1470

电池编号 Id/A QN/(A·h) te/℃ Ve/V
B0005 2 2 24 2.7
B0006 2 2 24 2.5
B0018 2 2 24 2.5
B0030 4 2 43 2.2
B0031 4 2 43 2.5
B0032 4 2 43 2.7
B0054 2 2 4 2.2
B0055 2 2 4 2.5
B0056 2 2 4 2.7
表 1  锂离子电池参数和运行工况
图 1  不同SOH下电压和电流变化曲线以及不同温度下SOC的变化曲线
图 2  健康因子的提取
图 3  极限学习机的结构
图 4  基于GA-HC的极限学习机框架图
te/℃ 电池编号 Vo/V Δt/s P
24 B0005 4.05 300 0.985 7
24 B0006 4.05 300 0.982 2
24 B0018 4.05 300 0.981 4
43 B0030 4.00 600 0.983 1
43 B0031 4.00 600 0.971 3
43 B0032 4.00 600 0.982 8
表 2  常温和高温下的健康因子相关性分析
te/℃ 电池编号 Io/A Δt/s P
4 B0054 1.4 1000 0.9467
4 B0055 1.4 1000 0.9562
4 B0056 1.4 1000 0.9123
表 3  低温下的健康因子相关性分析
图 5  常温下的SOH估计结果和误差
方法 电池编号 MAE/% MAPE/% RMSE/%
ELM B0005 1.68 1.91 1.95
ELM B0006 21.93 31.68 32.93
ELM B0018 3.15 3.91 3.25
GA-HC-ELM B0005 0.63 0.82 0.86
GA-HC-ELM B0006 0.43 0.64 0.65
GA-HC-ELM B0018 0.75 0.96 0.93
表 4  常温下的SOH估计结果误差
图 6  低温下的SOH估计结果和误差
方法 电池编号 MAE/% MAPE/% RMSE/%
ELM B0054 4.28 5.02 4.84
ELM B0055 1.69 2.15 2.07
ELM B0056 1.79 2.03 2.25
GA-HC-ELM B0054 1.08 1.33 1.41
GA-HC-ELM B0055 1.09 1.35 1.32
GA-HC-ELM B0056 1.36 1.56 1.61
表 5  低温下的SOH估计结果误差
图 7  高温下的SOH估计结果和误差
方法 电池编号 MAE/% MAPE/% RMSE/%
ELM B0030 2.74 2.93 3.07
ELM B0031 1.71 1.79 1.98
ELM B0032 0.93 1.03 1.13
GA-HC-ELM B0030 0.54 0.59 0.71
GA-HC-ELM B0031 0.59 0.63 0.74
GA-HC-ELM B0032 0.48 0.53 0.56
表 6  高温下的SOH估计结果误差
方法 RMSEav/% tav/s
低温 常温 高温
ELM 3.05 2.60 2.06 0.814
LSTM 2.47 1.93 2.14 13.316
GPR 1.86 1.37 1.14 3.276
GA-HC-ELM 1.44 0.81 0.67 3.941
表 7  ELM、LSTM、GPR和GA-HC-ELM模型的对比
1 王萍, 弓清瑞, 张吉昂, 等 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36 (24): 5201- 5212
WANG Ping, GONG Qing-rui, ZHANG Ji-ang, et al An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society, 2021, 36 (24): 5201- 5212
doi: 10.19595/j.cnki.1000-6753.tces.210385
2 杨胜杰, 罗冰洋, 王菁, 等 基于容量增量曲线峰 值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36 (11): 2277- 2287
YANG Sheng-jie, LUO Bing-yang, WANG Jing, et al State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36 (11): 2277- 2287
3 DONG G, YANG F, WEI Z, et al Data-driven battery health prognosis using adaptive brownian motion model[J]. IEEE Transactions on Industrial Informatics, 2020, 16 (7): 4736- 4746
doi: 10.1109/TII.2019.2948018
4 胡天中, 余建波 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报: 工学版, 2019, 53 (10): 1852- 1864
HU Tian-zhong, YU Jian-bo Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (10): 1852- 1864
5 XIONG R, TIAN J, MU H, et al A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries[J]. Applied Energy, 2017, 207: 372- 383
doi: 10.1016/j.apenergy.2017.05.124
6 FANG L, LI Q, PENG B. Online estimation and error analysis of both SOC and SOH of lithium-ion battery based on DEKF method [J]. Energy Procedia, 2019, 158: 3008-3013.
7 BURGOS C, ORCHARD M, KAZERANI M, et al Particle-filtering-based estimation of maximum available power state in lithium-ion batteries[J]. Applied Energy, 2016, 161: 349- 363
doi: 10.1016/j.apenergy.2015.09.092
8 ZHONG Y, HUANG M, CHEN Y, et al A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016, 321: 1- 10
doi: 10.1016/j.jpowsour.2016.04.119
9 周頔, 宋显华, 卢文斌, 等 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39 (1): 105- 111
ZHOU Di, SONG Xian-hua, LU Wen-bin, et al Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39 (1): 105- 111
doi: 10.13334/j.0258-8013.pcsee.181026
10 LIU W, XU Y Data-driven online health estimation of Li-ion batteries using a novel energy-based health indicator[J]. IEEE Transactions on Energy Conversion, 2020, 35 (3): 1715- 1718
doi: 10.1109/TEC.2020.2995112
11 徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704.
XU Jia-ning, NI Yu-long, ZHU Chun-bo. Remaining useful life prediction for lithium-ion batteries based on improved support vector [J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704.
12 樊亚翔, 肖飞, 许杰, 等 基于充电电压片段和核岭回归的锂离子电池SOH估计[J]. 中国电机工程学报, 2021, 675 (16): 5661- 5670
FAN Ya-xiang, XIAO Fei, XU Jie, et al State of health estimation of lithium-ion batteries based on the partial charging voltage segment and kernel ridge regression[J]. Proceedings of the CSEE, 2021, 675 (16): 5661- 5670
doi: 10.13334/J.0258-8013.PCSEE.201805
13 韩乔妮, 姜帆, 程泽 变温度下IHF-IGPR框架的锂离子电池健康状态预测方法[J]. 电工技术学报, 2021, 36 (17): 3705- 3720
HAN Qiao-ni, JIANG Fan, CHENG Ze State of health estimation for lithium-ion batteries based on the framework of IHF-IGPR under variable temperature[J]. Transactions of China Electrotechnical Society, 2021, 36 (17): 3705- 3720
doi: 10.19595/j.cnki.1000-6753.tces.201593
14 刘先庆, 王长宏, 吴婷婷 锂离子电池老化机理及综合利用综述[J]. 电池, 2022, 52 (2): 223- 227
LIU Xian-qing, WANG Chang-hong, WU Ting-ting Review of aging mechanism and comprehensive use of Li-ion battery[J]. Battery, 2022, 52 (2): 223- 227
15 王聪聪, 叶思成, 裴春兴, 等 电池健康状态实验与评估方法综述[J]. 电池, 2021, 51 (2): 197- 200
WANG Cong-cong, YE Si-cheng, PEI Chun-xing, et al Review on battery state-of-health experiment and estimation methods[J]. Battery, 2021, 51 (2): 197- 200
doi: 10.19535/j.1001-1579.2021.02.022
16 ZHANG Y, DUCHI J, WAINWRIGHT M Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates[J]. The Journal of Machine Learning Research, 2015, 16 (1): 3299- 3340
[1] 谭芳芳,朱俊江,严天宏,高志强,何岭松. 基于GA-WPT-ELM的6061铝合金表面粗糙度预测[J]. 浙江大学学报(工学版), 2020, 54(1): 40-47.
[2] 商强, 林赐云, 杨兆升, 邴其春, 邢茹茹. 基于变量选择和核极限学习机的交通事件检测[J]. 浙江大学学报(工学版), 2017, 51(7): 1339-1346.
[3] 裘日辉, 刘康玲, 谭海龙, 梁军. 基于极限学习机的分类算法及在故障识别中的应用[J]. 浙江大学学报(工学版), 2016, 50(10): 1965-1972.