能源工程 |
|
|
|
|
气库容积对低温环路热管的影响 |
赵晨阳1,2( ),李南茜1,*( ),李骏婷1,2,蒋珍华1,2,吴亦农1,2 |
1. 中国科学院上海技术物理研究所,上海 200083 2. 中国科学院大学,北京 100049 |
|
Effect of gas reservoir volume on cryogenic loop heat pipes |
Chenyang ZHAO1,2( ),Nanxi LI1,*( ),Junting LI1,2,Zhenhua JIANG1,2,Yinong WU1,2 |
1. Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083, China 2. University of Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
赵晨阳,李南茜,李骏婷,蒋珍华,吴亦农. 气库容积对低温环路热管的影响[J]. 浙江大学学报(工学版), 2024, 58(12): 2556-2566.
Chenyang ZHAO,Nanxi LI,Junting LI,Zhenhua JIANG,Yinong WU. Effect of gas reservoir volume on cryogenic loop heat pipes. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2556-2566.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.015
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2556
|
1 |
甘智华, 王博, 刘东立, 等 空间液氦温区机械式制冷技术发展现状及趋势[J]. 浙江大学学报: 工学版, 2012, 46 (12): 2160- 2177 GAN Zhihua, WANG Bo, LIU Dongli, et al Status and development trends of space mechanical refrigeration system at liquid helium temperature[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (12): 2160- 2177
doi: 10.3785/j.issn.1008-973X.2012.12.005
|
2 |
甘智华, 陶轩, 刘东立, 等 日本空间液氦温区低温技术的发展现状[J]. 浙江大学学报: 工学版, 2015, 49 (10): 1821- 1835 GAN Zhihua, TAO Xuan, LIU Dongli, et al Development status of spacecryogenic technology at liquid helium temperature in Japan[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (10): 1821- 1835
|
3 |
JIANG Z, WU Y, LU Z, et al On-orbit performance of the FY-4 GIIRS stirling cryocooler over 2 years[J]. Journal of Low Temperature Physics, 2021, 203: 244- 253
doi: 10.1007/s10909-021-02570-2
|
4 |
ROSS JR R G. A study of the use of 6 K ACTDP cryocoolers for the MIRI Instrument on JWST [C]// International Cryocooler Conference . New Orleans: Springer, 2005: 15–24.
|
5 |
刘东立, 吴镁, 汪伟伟, 等 詹姆斯·韦伯太空望远镜低温制冷系统的发展历程[J]. 低温工程, 2013, 6: 56- 62 LIU Dongli, WU Mei, WANG Weiwei, et al Development of cryogenic system for James Webb Space Telescope[J]. Cryogenics, 2013, 6: 56- 62
doi: 10.3969/j.issn.1000-6516.2013.01.012
|
6 |
GROB E W. System accommodation of propylene loop heat pipes for the geoscience laser altimeter system (GLAS) instrument [C]// 31st International Conference on Environmental Systems . Orlando, [s.n.], 2001: 2263.
|
7 |
BAI L, ZHANG L, LIN G, et al Development of cryogenic loop heat pipes: a review and comparative analysis[J]. Applied Thermal Engineering, 2015, 89: 180- 191
doi: 10.1016/j.applthermaleng.2015.06.010
|
8 |
HOANG T T, O'CONNELL T A, KU J, et al. Design optimization of a hydrogen advanced loop heat pipe for space-based IR sensor and detector cryocooling [C]// Cryogenic Optical Systems and Instruments X SPIE . San Diego: [s.n.], 2003: 86−96.
|
9 |
HOANG T T, O’CONNELL T A, KU J, et al. Performance demonstration of hydrogen advanced loop heat pipe for 20~30 K cryocooling of far infrared sensors [C]// Cryogenic Optical Systems and Instruments XI SPIE . San Diego: [s.n.], 2005: 590410.
|
10 |
HOANG T T, O’CONNELL T A, KHRUSTALEV D K. Development of a flexible advanced loop heat pipe for across-gimbal cryocooling [C]// Cryogenic Optical Systems and Instruments X SPIE , 2003: 68−76.
|
11 |
BAI L, LIN G, ZHANG H, et al Operating characteristics of a miniature cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2012, 55 (25/26): 8093- 8099
doi: 10.1016/j.ijheatmasstransfer.2012.08.044
|
12 |
BAI L, LIN G, ZHANG H, et al Experimental study of a nitrogen-charged cryogenic loop heat pipe[J]. Cryogenics, 2012, 52 (10): 557- 563
doi: 10.1016/j.cryogenics.2012.07.005
|
13 |
DU C, BAI L, LIN G, et al Determination of charged pressure of working fluid and its effect on the operation of a miniature CLHP[J]. International Journal of Heat and Mass Transfer, 2013, 63: 454- 462
doi: 10.1016/j.ijheatmasstransfer.2013.03.079
|
14 |
GUO Y, LIN G, HE J, et al Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe[J]. Energy Conversion and Management, 2017, 134: 178- 187
doi: 10.1016/j.enconman.2016.12.038
|
15 |
HE J, GUO Y, ZHANG H, et al Design and experimental investigation of a neon cryogenic loop heat pipe[J]. Heat and Mass Transfer, 2017, 53 (11): 3229- 3239
|
16 |
GUO Y, LIN G, BAI L, et al Experimental study of the thermal performance of a neon cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1266- 1274
doi: 10.1016/j.ijheatmasstransfer.2017.12.138
|
17 |
ZHAO Y, YAN T, LIANG J Experimental study on cooling down process of a nitrogen-charged cryogenic loop heat pipe[J]. Journal of Thermal Science, 2023, 32 (1): 153- 165
doi: 10.1007/s11630-022-1688-4
|
18 |
郭元东, 周强, 刘欣彤, 等 35 K深低温制冷与热传输集成系统研究[J]. 真空与低温, 2022, 28 (3): 353- 358 GUO Yuandong, ZHOU Qiang, LIU Xintong, et al Research on 35 K cryogenic refrigeration and heat transfer integrated system[J]. Vacuum and Cryogenics, 2022, 28 (3): 353- 358
doi: 10.3969/j.issn.1006-7086.2022.03.016
|
19 |
李强, 马路, 宣益民 低温环路热管(CLHP)的实验研究[J]. 工程热物理学报, 2010, 31 (1): 120- 123 LI Qiang, MA Lu, XUAN Yimin Experimental investigation of cryogenic loop heat pipe[J]. Journal of Engineering Thermophysics, 2010, 31 (1): 120- 123
|
20 |
GULLY P, YAN T. Thermal Management of a nitrogen cryogenic loop heat pipe [C]// AIP Conference Proceedings , 2010: 1173−1180.
|
21 |
ZHAO Y, YAN T, LIANG J. Effect of shroud temperature on performance of a cryogenic loop heat pipe [C]// AIP Conference Proceedings , 2012: 409−416.
|
22 |
GULLY P, QING M, SEYFERT P, et al. Nitrogen cryogenic loop heat pipe: results of a first prototype [J]. Cryocooler Integration Technologies , 2009: 525−531.
|
23 |
YAN T, ZHAO Y, LIANG J, et al Investigation on optimal working fluid inventory of a cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2013, 66: 334- 337
doi: 10.1016/j.ijheatmasstransfer.2013.07.043
|
24 |
ZHAO Y, YAN T, LI J, et al. Experimental study on the secondary evaporator of a cryogenic loop heat pipe [C]// AIP Conference Proceedings , 2014: 20−27.
|
25 |
GUO Y, LIN G, ZHANG H, et al Investigation on thermal behaviours of a methane charged cryogenic loop heat pipe[J]. Energy, 2018, 157: 516- 525
doi: 10.1016/j.energy.2018.05.133
|
26 |
LEE J, KIM D, MUN J, et al Heat-transfer characteristics of a cryogenic loop heat pipe for space applications[J]. Energies, 2020, 13 (7): 1616
doi: 10.3390/en13071616
|
27 |
BAI L, LIN G, ZHANG H, et al Effect of component layout on the operation of a miniature cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2013, 60: 61- 68
doi: 10.1016/j.ijheatmasstransfer.2013.01.011
|
28 |
ZHAO Y, YAN T, LIANG J Experimental study on a cryogenic loop heat pipe with high heat capacity[J]. International Journal of Heat and Mass Transfer, 2011, 54 (15/16): 3304- 3308
doi: 10.1016/j.ijheatmasstransfer.2011.03.056
|
29 |
CHO H, JIN L, JEONG S Experimental investigation on performances and characteristics of nitrogen-charged cryogenic loop heat pipe with wick-mounted condenser[J]. Cryogenics, 2020, 103: 1- 11
|
30 |
BUGBY D, MARLAND B, STOUFFER C, et al. Across-gimbal and miniaturized cryogenic loop heat pipes [C]// AIP Conference Proceedings . [s.l.]: AIP, 2003: 218−226.
|
31 |
GUO Y, LIN G, HE J, et al Experimental analysis of operation failure for a neon cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2019, 138: 96- 108
doi: 10.1016/j.ijheatmasstransfer.2019.04.045
|
32 |
GUO Y, LIN G, BAI L, et al Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design[J]. Energy Conversion and Management, 2016, 118: 353- 363
doi: 10.1016/j.enconman.2016.04.022
|
33 |
HE J, GUO Y, MIAO J, et al Pre-flight thermal performance test of a 35 K cryogenic integrated system[J]. International Journal of Refrigeration, 2019, 98: 372- 380
doi: 10.1016/j.ijrefrig.2018.11.020
|
34 |
GUO Y, ZHOU Q, LIU X, et al Co-designing cryogenic system with pulse tube cryocooler and loop heat pipe for infrared energy management[J]. Applied Thermal Engineering, 2021, 195: 117228
doi: 10.1016/j.applthermaleng.2021.117228
|
35 |
CHO H, JIN L, KIM S, et al Experimental validation of heat switch capability of cryogenic loop heat pipe[J]. Cryogenics, 2022, 121: 103403
doi: 10.1016/j.cryogenics.2021.103403
|
36 |
柏立战, 林贵平 深冷环路热管稳态运行特性的理论分析[J]. 航空动力学报, 2010, 25 (7): 1530- 1535 BAI Lizhan, LIN Guiping Theoretical analysis of steady-state operating characteristics of a cryogenic loop heat pipe[J]. Journal of Aerospace Power, 2010, 25 (7): 1530- 1535
|
37 |
DUNBAR N, CADELL P. Working fluids and figure of merit for CPL/LHP applications [C]// CPL-98 Workshop . El Segundo: The Aerospace Corporation, 1998.
|
38 |
JOUNG W, LEE J, LEE S, et al Derivation and validation of a figure of merit for loop heat pipes with medium temperature working fluids[J]. Journal of Heat Transfer, 2016, 138 (5): 052901
doi: 10.1115/1.4032534
|
39 |
GUO Y, LIN G, HE J, et al Supercritical startup strategy of cryogenic loop heat pipe with different working fluids[J]. Applied Thermal Engineering, 2019, 155: 267- 276
doi: 10.1016/j.applthermaleng.2019.04.008
|
40 |
CHERNYSHEVA M A, MAYDANIK Y F Numerical simulation of transient heat and mass transfer in a cylindrical evaporator of a loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2008, 51 (17/18): 4204- 4215
doi: 10.1016/j.ijheatmasstransfer.2007.12.021
|
41 |
CHERNYSHEVA M A, MAYDANIK Y F, OCHTERBECK J M Heat transfer investigation in evaporator of loop heat pipe during startup[J]. Journal of Thermophysics and Heat Transfer, 2008, 22 (4): 617- 622
doi: 10.2514/1.35519
|
42 |
KAYA T, PÉREZ R, GREGORI C, et al Numerical simulation of transient operation of loop heat pipes[J]. Applied Thermal Engineering, 2008, 28 (28): 967- 974
|
43 |
LEMMON E, BELL I H, HUBER M, et al. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 10.0, national institute of standards and technology [M]. Gaithersburg: NIST, 2018.
|
44 |
KU J. Operating characteristics of loop heat pipes [J]. SAE Transactions , 1999: 503−519.
|
45 |
王亦伟, 岑继文, 蒋方明, 等 充液量对回路热管性能的影响[J]. 光电子·激光, 2015, 26 (4): 676- 681 WANG Yiwei, CEN Jiwen, JIANG Fangming, et al The influence of filling ratio on the performance of loop heat pipe[J]. Journal of Optoelectronics·Laser, 2015, 26 (4): 676- 681
|
46 |
刘成, 吴亦农, 谢荣建, 等. 乙烷工质低温环路热管最佳充液率的研究[C]// 上海市制冷学会2017年学术年会. 上海: [s.n.], 2017: 112−117. LIU Cheng, WU Yinong, XIE Rongjian, et al. Investigation on ideal filling ratio of an ethane charged cryogenic loop heat pipe [C]// 2017 Academic Annual Meeting of Shanghai Refrigeration Society . Shanghai: [s.n.], 2017: 112−117.
|
47 |
HE S, LIU Z, WANG D, et al Effect of different charge ratios on transient performance of a flat type of the LHP with a shared compensation chamber[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1075- 1081
doi: 10.1016/j.ijheatmasstransfer.2019.04.129
|
48 |
马宏, 王金波. 仪器精度理论 [M]. 北京: 北京航空航天大学出版社, 2009: 91−95.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|