Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 416-424    DOI: 10.3785/j.issn.1008-973X.2020.02.024
航空航天技术     
环形燃烧室点火过程的实验与数值研究
夏一帆1(),赵冬梅2,葛海文3,林其钊2,郑耀1,王高峰1,*()
1. 浙江大学 航空航天学院,浙江 杭州 310027
2. 中国科学技术大学 热科学与能源工程系,安徽 合肥 230026
3. 德州理工大学 机械工程系,德州 拉伯克 79409
Experimental and numerical investigations of ignition process in annular combustor
Yi-fan XIA1(),Dong-mei ZHAO2,Hai-wen GE3,Qi-zhao LIN2,Yao ZHENG1,Gao-feng WANG1,*()
1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
2. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
3. Department of Mechanical Engineering, Texas Tech University, Lubbock 79409, USA
 全文: PDF(1575 KB)   HTML
摘要:

对多喷嘴旋流环形燃烧室的周向点火过程进行实验研究和数值模拟. 数值方法采用非稳态雷诺平均(RANS)、自适应网格加密(AMR)方法和加州大学圣迭戈分校(UCSD)详细反应机理. 将数值模拟所得的火焰周向联焰、合焰和放热率与实验结果进行对比. 结果表明,数值计算所得的火焰周向传播过程与实验中高速相机记录的火焰传播过程整体相符. 计算所得的火焰面积和放热率变化与实验所得的积分亮度变化曲线较符合. 实验和数值结果均表明,在点火过程中存在拱形火焰、周向传播模式以及不对称的火焰汇合. 所采用的数值方法能够基本模拟环形燃烧室中的火焰传播过程. 与实验相比,数值计算能揭示更多流场和火焰传播的细节,但是数值结果依赖于实验的标定.

关键词: 环形燃烧室周向点火点火实验非稳态雷诺平均自适应网格详细机理    
Abstract:

The ignition process of an annular combustor with multiple injectors was investigated by experiments and simulations. In the numerical simulation, the unsteady Reynolds average Navier-Stokes (RANS) method, adaptive mesh refinement (AMR) and University of California, San Diego (UCSD) detailed chemistry were applied. The simulation predicted light-round process, flame merging and heat release rate were compared with the experimental results. The numerical results showed an overall agreement of the light-round process with the experimental results recorded by high speed camera. The simulated flame surface area and integrated heat release rate were in agreement with the profile of integrated light intensity of experiment. The arc-like flame, azimuthal propagation pattern of light-round and asymmetry of the flame merging were observed both in simulations and experiments. The simulation method is reliable for predicting the flame propagation in the annular combustor. Compared to experiments, the numerical method is capable of revealing more details of flow field and flame propagation, but the numerical results depends on the validation of experiments.

Key words: annular combustor    light-round ignition    ignition test    unsteady Reynolds average Navier-Stokes    adaptive mesh    detailed chemistry
收稿日期: 2019-01-28 出版日期: 2020-03-10
CLC:  V 23  
基金资助: 国家自然科学基金资助项目(51976184,91841302);中央高校基本科研业务费资助项目(2019FZA4025)
通讯作者: 王高峰     E-mail: xiayifan@zju.edu.cn;gfwang@zju.edu.cn
作者简介: 夏一帆(1988—),男,博士,从事航空发动机点火机理研究. orcid.org/0000-0003-3618-6196. E-mail: xiayifan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
夏一帆
赵冬梅
葛海文
林其钊
郑耀
王高峰

引用本文:

夏一帆,赵冬梅,葛海文,林其钊,郑耀,王高峰. 环形燃烧室点火过程的实验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(2): 416-424.

Yi-fan XIA,Dong-mei ZHAO,Hai-wen GE,Qi-zhao LIN,Yao ZHENG,Gao-feng WANG. Experimental and numerical investigations of ignition process in annular combustor. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 416-424.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.024        http://www.zjujournals.com/eng/CN/Y2020/V54/I2/416

图 1  环形燃烧室实验装置示意图
图 2  高速相机和环形燃烧室布置示意图
图 3  高速相机所摄旋流火焰图像
工况 qV1 /(L?min?1) qV2 /(L?min?1) Φ P/kW Ub /(m?s?1)
FFSL 10-357 10 357 0.67 15.5 4.87
表 1  点火实验工况
图 4  层流火焰结构和主要组分分布
图 5  环形燃烧室和某截面上的火焰
图 6  旋流火焰和传播中火焰的AMR网格
加密等级 Δx0 /mm Δx /mm
1 2 1.000
2 2 0.500
3 2 0.250
4 2 0.125
表 2  加密等级对应的网格尺度
图 7  周向点火过程中不同时刻的火焰形态
图 8  亮度积分曲线随点火时间变化
图 9  计算所得周向点火过程
图 10  放热率的实验与数值结果对比
图 11  火焰汇合的不对称性
图 12  环形燃烧室不同截面上的流线分布
图 13  火焰前沿的传播过程示意图
1 LEFEBVRE A H, BALLAL D R. Gas turbine combustion: alternative fuels and emissions [M]. New York: CRC press, 2010.
2 BOURGOUIN J F, DUROX D, SCHULLER T, et al Ignition dynamics of an annular combustor equipped with multiple swirling injectors[J]. Combustion and Flame, 2013, 160 (8): 1398- 1413
doi: 10.1016/j.combustflame.2013.02.014
3 LINASSIER G, VIGUIER C, VERDIER H, et al. Experimental investigations of the ignition performances on a multi-sector combustor under high altitude conditions [C]// The 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville: AIAA, 2012: 934.
4 NEOPHYTOU A, CUENOT B, DUCHAINE P Large-eddy simulation of ignition and flame propagation in a trisector combustor[J]. Journal of Propulsion and Power, 2015, 32 (2): 345- 359
5 BARRE D, ESCLAPEZ L, CORDIER M, et al Flame propagation in aeronautical swirled multi-burners: experimental and numerical investigation[J]. Combustion and Flame, 2014, 161 (9): 2387- 2405
doi: 10.1016/j.combustflame.2014.02.006
6 CORDIER M, VANDEL A, RENOU B, et al. Experimental and numerical analysis of an ignition sequence in a multiple-injectors burner [C]// ASME Turbo Expo. San Antonio: ASME, 2013: 1182.
7 PRIEUR K, DUROX D, BEAUNIER J, et al Ignition dynamics in an annular combustor for liquid spray and premixed gaseous injection[J]. Proceedings of the Combustion Institute, 2017, 36 (3): 3717- 3724
doi: 10.1016/j.proci.2016.08.008
8 BACH E, KARIUKI J, DAWSON J, et al. Spark ignition of single bluff-body premixed flames and annular combustors [C]// The 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine: AIAA, 2013: 1182.
9 MACHOVER E, MASTORAKOS E Experimental investigation on spark ignition of annular premixed combustors[J]. Combustion and Flame, 2017, 178: 148- 157
doi: 10.1016/j.combustflame.2017.01.013
10 MACHOVER E, MASTORAKOS E Spark ignition of annular non-premixed combustors[J]. Experimental Thermal and Fluid Science, 2016, 73: 64- 70
doi: 10.1016/j.expthermflusci.2015.09.008
11 MACHOVER E, MASTORAKOS E Numerical investigation of the stochastic behavior of light-round in annular non-premixed combustors[J]. Combustion Science and Technology, 2017, 189 (9): 1467- 1485
doi: 10.1080/00102202.2017.1305366
12 令狐昌鸿, 王高峰, 钟亮, 等 环形旋流燃烧室模型点火过程的实验[J]. 航空动力学报, 2018, 33 (7): 1767- 1778
LINGHU Chang-hong, WANG Gao-feng, ZHONG Liang, et al Experiment on ignition process in annular swirling combustor model[J]. Journal of Aerospace Power, 2018, 33 (7): 1767- 1778
13 叶沉然, 王高峰, 马承飚, 等 斜喷环流环形燃烧室点火实验研究[J]. 工程热物理学报, 2018, 39 (11): 2549- 2558
YE Chen-ran, WANG Gao-feng, MA Cheng-biao, et al Experimental invesitgation of ignition process in an annular combustor with circumferential flow via oblique injection[J]. Journal of Engineering Thermophysics, 2018, 39 (11): 2549- 2558
14 YE C, WANG G, FANG Y, et al. Ignition dynamics in an annular combustor with gyratory flow motion [C]// ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Oslo: ASME, 2018: 76624.
15 BOILEAU M, STAFFELBACH G, CUENOT B, et al LES of an ignition sequence in a gas turbine engine[J]. Combustion and Flame, 2008, 154 (1/2): 2- 22
16 PHILIP M, BOILEAU M, VICQUELIN R, et al Ignition sequence of an annular multi-injector combustor[J]. Physics of Fluids, 2014, 26 (9): 091106
doi: 10.1063/1.4893452
17 PHILIP M, BOILEAU M, VICQUELIN R, et al Large eddy simulations of the ignition sequence of an annular multiple-injector combustor[J]. Proceedings of the Combustion Institute, 2015, 35 (3): 3159- 3166
doi: 10.1016/j.proci.2014.07.008
18 PHILIP M, BOILEAU M, VICQUELIN R, et al Simulation of the ignition process in an annular multiple-injector combustor and comparison with experiments[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137 (3): 031501
doi: 10.1115/1.4028265
19 LANCIEN T, PRIEUR K, DUROX D, et al Large eddy simulation of light-round in an annular combustor with liquid spray injection and comparison with experiments[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140 (2): 021504
doi: 10.1115/1.4037827
20 LANCIEN T, PRIEUR K, DUROX D, et al Leading point behavior during the ignition of an annular combustor with liquid n-heptane injectors[J]. Proceedings of the Combustion Institute, 2019, 37 (4): 5021- 5029
doi: 10.1016/j.proci.2018.05.160
21 GICQUEL L Y, STAFFELBACH G, POINSOT T Large eddy simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38 (6): 782- 817
doi: 10.1016/j.pecs.2012.04.004
22 DRENNAN S A, KUMAR G. Demonstration of an automatic meshing approach for simulation of a liquid fueled gas turbine with detailed chemistry [C]// The AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland: AIAA, 2006: 3628.
23 KUMAR G, DRENNAN S A. A CFD investigation of multiple burner ignition and flame propagation with detailed chemistry and automatic meshing [C]// AIAA Populsion and Energy Forum. Salt Lake City: AIAA, 2016: 4561.
24 LINKE-DIESINGER A. Systems of commercial turbofan engines [M]. Berlin: Springer-Verlag, 2008.
25 YAKHOT V, ORSZAG S A Renormalization group analysis of turbulence. I: basic theory[J]. Journal of Scientific Computing, 1986, 1 (1): 3- 51
doi: 10.1007/BF01061452
26 POINSOT T, VEYNANTE D. Theoretical and numerical combustion [M]. Philadelphia: RT Edwards, Inc., 2005.
27 UCSD. Chemical-kinetic mechanisms for combustion applications, san diego mechanism web page [EB/OL]. [2019-11-30]. http://combustion.ucsd.edu.
28 RICHARDS K, SENECAL P, POMRANING E. Converge manual (V2.4) [M]. Madison: Convergent Science, 2017.
29 ISSA R, AHMADI-BEFRUI B, BESHAY K, et al Solution of the implicitly discretised reacting flow equations by operator-splitting[J]. Journal of Computational Physics, 1991, 93 (2): 388- 410
doi: 10.1016/0021-9991(91)90191-M
[1] 张小骏, 刘志镜, 李杰. 基于图像处理思想的激波捕捉自适应网格方法[J]. 浙江大学学报(工学版), 2017, 51(1): 89-94.