Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (12): 2556-2566    DOI: 10.3785/j.issn.1008-973X.2024.12.015
能源工程     
气库容积对低温环路热管的影响
赵晨阳1,2(),李南茜1,*(),李骏婷1,2,蒋珍华1,2,吴亦农1,2
1. 中国科学院上海技术物理研究所,上海 200083
2. 中国科学院大学,北京 100049
Effect of gas reservoir volume on cryogenic loop heat pipes
Chenyang ZHAO1,2(),Nanxi LI1,*(),Junting LI1,2,Zhenhua JIANG1,2,Yinong WU1,2
1. Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1139 KB)   HTML
摘要:

低温环路热管(CLHP)的气库容积通常为其余部件总容积的30~100倍,重量占比最大. 为了实现CLHP的轻量化设计,提高卫星载荷资源的利用率,开展气库容积对CLHP启动与稳态工作特性影响的机理研究. 建立CLHP的启动模型和稳态失效模型,开展气库容积对冷凝温度、次蒸发温度和传热热阻等关键参数影响的理论与实验验证研究. 结果表明:通过提高次蒸发温度设计值,CLHP实验样机可在气库容积仅为其余部件总容积的11倍的情况下顺利启动;当主热负荷较高时,不同气库容积对CLHP传热热阻影响较小;当主储液器容积一定时,可通过减小气库容积增强主储液器的调节能力,使CLHP稳定运行的热负荷范围增加.

关键词: 低温环路热管启动特性稳态气库储液器    
Abstract:

The gas reservoir volume of a cryogenic loop heat pipe (CLHP) is usually 30 to 100 times the total volume of the other components, and its weight accounts for the largest proportion. To realize the lightweight design of CLHPs and improve the utilization rate of satellite payload resources, research was conducted on the mechanism of the influence of gas reservoir volume on the startup and steady-state operating characteristics of CLHPs. A start-up model and a steady-state failure model of CLHPs were established, and theoretical and experimental validation studies were carried out on the influence of gas reservoir volume on key parameters of the condensation temperature, evaporation temperature of the secondary evaporator and heat transfer thermal resistance. Results showed that, by increasing the design value of the evaporation temperature of the secondary evaporator, the CLHP experimental prototype started up smoothly with a gas reservoir volume only 11 times the total volume of the other components. The effect of different gas reservoir volumes on the heat transfer thermal resistance of CLHPs was negligible when the primary heat load was high. When the volume of the primary compensation chamber was certain, the regulating ability of the primary compensation chamber could be enhanced by decreasing the volume of the gas reservoir, thereby expanding the range of primary heat load for stable operation of the CLHPs.

Key words: cryogenic loop heat pipe    startup characteristic    steady state    gas reservoir    compensation chamber
收稿日期: 2023-10-30 出版日期: 2024-11-25
CLC:  TK 124  
基金资助: 中国科学院率先行动“引才计划”B类人才项目;中国科学院战略性先导科技专项(B类)(XDB35000000,XDB35040102).
通讯作者: 李南茜     E-mail: zhaochenyang@mail.sitp.ac.cn;linanxi@mail.sitp.ac.cn
作者简介: 赵晨阳(1996—),女,博士生,从事低温环路热管研究. orcid.org/0009-0006-5683-0128. E-mail:zhaochenyang@mail.sitp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵晨阳
李南茜
李骏婷
蒋珍华
吴亦农

引用本文:

赵晨阳,李南茜,李骏婷,蒋珍华,吴亦农. 气库容积对低温环路热管的影响[J]. 浙江大学学报(工学版), 2024, 58(12): 2556-2566.

Chenyang ZHAO,Nanxi LI,Junting LI,Zhenhua JIANG,Yinong WU. Effect of gas reservoir volume on cryogenic loop heat pipes. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2556-2566.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.015        https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2556

图 1  低温环路热管结构示意图
图 2  低温环路热管启动阶段示意图
图 3  热力学状态图
图 4  CLHP实验样机
部件结构参数
主/次蒸发器14.0 / 15.5$ \times $80 mm (内径/外径$ \times $长度)
主/次外层毛细芯5×70 / 14×75 mm(内径×内长度/外径×外长度)
1/1×70×12 (槽宽 / 槽深×长×道个数)
2 μm(孔径)0.53(孔隙率)镍(材料)
主/次内层毛细芯3.5/5.0×70 mm(内径/外径×长度)
20 μm(孔径)0.7(孔隙率)316 L(材料)
主/次储液器14.0 / 15.5×60 mm (内径/外径×长度)
主冷凝器2 / 3×866 mm (内径/外径×长度)
次冷凝器2 / 3×219 mm (内径/外径×长度)
主液体管线2 / 3×1 210 mm (内径/外径×长度)
主气体管线2 / 3×1 240 mm (内径/外径×长度)
气库500、1 000、2 000 mL
表 1  实验样机参数
图 5  实验系统示意图
图 6  CLHP启动过程温度曲线(气库容积1 000 mL、热沉温度170 K)
图 7  CLHP启动过程温度曲线(气库容积500 mL、热沉温度230 K)
图 8  热沉温度和气库容积对冷凝温度的影响
图 9  热沉温度和气库容积对次蒸发器蒸发温度的影响
图 10  气库容积对传热热阻的影响(次加热负荷为5 W)
图 11  气库容积对传热热阻的影响(次加热负荷为0 W)
图 12  温度170~230 K时各部件内工质的质量
图 13  气库容积和蒸发温度对气库内工质质量变化量的影响
图 14  主热负荷对热阻和失效的影响(热沉温度为170 K)
图 15  主热负荷对热阻和失效的影响(热沉温度为190 K)
图 16  主热负荷对热阻和失效的影响(热沉温度为210 K)
图 17  主热负荷对热阻和失效的影响(热沉温度为230 K)
1 甘智华, 王博, 刘东立, 等 空间液氦温区机械式制冷技术发展现状及趋势[J]. 浙江大学学报: 工学版, 2012, 46 (12): 2160- 2177
GAN Zhihua, WANG Bo, LIU Dongli, et al Status and development trends of space mechanical refrigeration system at liquid helium temperature[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (12): 2160- 2177
doi: 10.3785/j.issn.1008-973X.2012.12.005
2 甘智华, 陶轩, 刘东立, 等 日本空间液氦温区低温技术的发展现状[J]. 浙江大学学报: 工学版, 2015, 49 (10): 1821- 1835
GAN Zhihua, TAO Xuan, LIU Dongli, et al Development status of spacecryogenic technology at liquid helium temperature in Japan[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (10): 1821- 1835
3 JIANG Z, WU Y, LU Z, et al On-orbit performance of the FY-4 GIIRS stirling cryocooler over 2 years[J]. Journal of Low Temperature Physics, 2021, 203: 244- 253
doi: 10.1007/s10909-021-02570-2
4 ROSS JR R G. A study of the use of 6 K ACTDP cryocoolers for the MIRI Instrument on JWST [C]// International Cryocooler Conference . New Orleans: Springer, 2005: 15–24.
5 刘东立, 吴镁, 汪伟伟, 等 詹姆斯·韦伯太空望远镜低温制冷系统的发展历程[J]. 低温工程, 2013, 6: 56- 62
LIU Dongli, WU Mei, WANG Weiwei, et al Development of cryogenic system for James Webb Space Telescope[J]. Cryogenics, 2013, 6: 56- 62
doi: 10.3969/j.issn.1000-6516.2013.01.012
6 GROB E W. System accommodation of propylene loop heat pipes for the geoscience laser altimeter system (GLAS) instrument [C]// 31st International Conference on Environmental Systems . Orlando, [s.n.], 2001: 2263.
7 BAI L, ZHANG L, LIN G, et al Development of cryogenic loop heat pipes: a review and comparative analysis[J]. Applied Thermal Engineering, 2015, 89: 180- 191
doi: 10.1016/j.applthermaleng.2015.06.010
8 HOANG T T, O'CONNELL T A, KU J, et al. Design optimization of a hydrogen advanced loop heat pipe for space-based IR sensor and detector cryocooling [C]// Cryogenic Optical Systems and Instruments X SPIE . San Diego: [s.n.], 2003: 86−96.
9 HOANG T T, O’CONNELL T A, KU J, et al. Performance demonstration of hydrogen advanced loop heat pipe for 20~30 K cryocooling of far infrared sensors [C]// Cryogenic Optical Systems and Instruments XI SPIE . San Diego: [s.n.], 2005: 590410.
10 HOANG T T, O’CONNELL T A, KHRUSTALEV D K. Development of a flexible advanced loop heat pipe for across-gimbal cryocooling [C]// Cryogenic Optical Systems and Instruments X SPIE , 2003: 68−76.
11 BAI L, LIN G, ZHANG H, et al Operating characteristics of a miniature cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2012, 55 (25/26): 8093- 8099
doi: 10.1016/j.ijheatmasstransfer.2012.08.044
12 BAI L, LIN G, ZHANG H, et al Experimental study of a nitrogen-charged cryogenic loop heat pipe[J]. Cryogenics, 2012, 52 (10): 557- 563
doi: 10.1016/j.cryogenics.2012.07.005
13 DU C, BAI L, LIN G, et al Determination of charged pressure of working fluid and its effect on the operation of a miniature CLHP[J]. International Journal of Heat and Mass Transfer, 2013, 63: 454- 462
doi: 10.1016/j.ijheatmasstransfer.2013.03.079
14 GUO Y, LIN G, HE J, et al Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe[J]. Energy Conversion and Management, 2017, 134: 178- 187
doi: 10.1016/j.enconman.2016.12.038
15 HE J, GUO Y, ZHANG H, et al Design and experimental investigation of a neon cryogenic loop heat pipe[J]. Heat and Mass Transfer, 2017, 53 (11): 3229- 3239
16 GUO Y, LIN G, BAI L, et al Experimental study of the thermal performance of a neon cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1266- 1274
doi: 10.1016/j.ijheatmasstransfer.2017.12.138
17 ZHAO Y, YAN T, LIANG J Experimental study on cooling down process of a nitrogen-charged cryogenic loop heat pipe[J]. Journal of Thermal Science, 2023, 32 (1): 153- 165
doi: 10.1007/s11630-022-1688-4
18 郭元东, 周强, 刘欣彤, 等 35 K深低温制冷与热传输集成系统研究[J]. 真空与低温, 2022, 28 (3): 353- 358
GUO Yuandong, ZHOU Qiang, LIU Xintong, et al Research on 35 K cryogenic refrigeration and heat transfer integrated system[J]. Vacuum and Cryogenics, 2022, 28 (3): 353- 358
doi: 10.3969/j.issn.1006-7086.2022.03.016
19 李强, 马路, 宣益民 低温环路热管(CLHP)的实验研究[J]. 工程热物理学报, 2010, 31 (1): 120- 123
LI Qiang, MA Lu, XUAN Yimin Experimental investigation of cryogenic loop heat pipe[J]. Journal of Engineering Thermophysics, 2010, 31 (1): 120- 123
20 GULLY P, YAN T. Thermal Management of a nitrogen cryogenic loop heat pipe [C]// AIP Conference Proceedings , 2010: 1173−1180.
21 ZHAO Y, YAN T, LIANG J. Effect of shroud temperature on performance of a cryogenic loop heat pipe [C]// AIP Conference Proceedings , 2012: 409−416.
22 GULLY P, QING M, SEYFERT P, et al. Nitrogen cryogenic loop heat pipe: results of a first prototype [J]. Cryocooler Integration Technologies , 2009: 525−531.
23 YAN T, ZHAO Y, LIANG J, et al Investigation on optimal working fluid inventory of a cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2013, 66: 334- 337
doi: 10.1016/j.ijheatmasstransfer.2013.07.043
24 ZHAO Y, YAN T, LI J, et al. Experimental study on the secondary evaporator of a cryogenic loop heat pipe [C]// AIP Conference Proceedings , 2014: 20−27.
25 GUO Y, LIN G, ZHANG H, et al Investigation on thermal behaviours of a methane charged cryogenic loop heat pipe[J]. Energy, 2018, 157: 516- 525
doi: 10.1016/j.energy.2018.05.133
26 LEE J, KIM D, MUN J, et al Heat-transfer characteristics of a cryogenic loop heat pipe for space applications[J]. Energies, 2020, 13 (7): 1616
doi: 10.3390/en13071616
27 BAI L, LIN G, ZHANG H, et al Effect of component layout on the operation of a miniature cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2013, 60: 61- 68
doi: 10.1016/j.ijheatmasstransfer.2013.01.011
28 ZHAO Y, YAN T, LIANG J Experimental study on a cryogenic loop heat pipe with high heat capacity[J]. International Journal of Heat and Mass Transfer, 2011, 54 (15/16): 3304- 3308
doi: 10.1016/j.ijheatmasstransfer.2011.03.056
29 CHO H, JIN L, JEONG S Experimental investigation on performances and characteristics of nitrogen-charged cryogenic loop heat pipe with wick-mounted condenser[J]. Cryogenics, 2020, 103: 1- 11
30 BUGBY D, MARLAND B, STOUFFER C, et al. Across-gimbal and miniaturized cryogenic loop heat pipes [C]// AIP Conference Proceedings . [s.l.]: AIP, 2003: 218−226.
31 GUO Y, LIN G, HE J, et al Experimental analysis of operation failure for a neon cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2019, 138: 96- 108
doi: 10.1016/j.ijheatmasstransfer.2019.04.045
32 GUO Y, LIN G, BAI L, et al Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design[J]. Energy Conversion and Management, 2016, 118: 353- 363
doi: 10.1016/j.enconman.2016.04.022
33 HE J, GUO Y, MIAO J, et al Pre-flight thermal performance test of a 35 K cryogenic integrated system[J]. International Journal of Refrigeration, 2019, 98: 372- 380
doi: 10.1016/j.ijrefrig.2018.11.020
34 GUO Y, ZHOU Q, LIU X, et al Co-designing cryogenic system with pulse tube cryocooler and loop heat pipe for infrared energy management[J]. Applied Thermal Engineering, 2021, 195: 117228
doi: 10.1016/j.applthermaleng.2021.117228
35 CHO H, JIN L, KIM S, et al Experimental validation of heat switch capability of cryogenic loop heat pipe[J]. Cryogenics, 2022, 121: 103403
doi: 10.1016/j.cryogenics.2021.103403
36 柏立战, 林贵平 深冷环路热管稳态运行特性的理论分析[J]. 航空动力学报, 2010, 25 (7): 1530- 1535
BAI Lizhan, LIN Guiping Theoretical analysis of steady-state operating characteristics of a cryogenic loop heat pipe[J]. Journal of Aerospace Power, 2010, 25 (7): 1530- 1535
37 DUNBAR N, CADELL P. Working fluids and figure of merit for CPL/LHP applications [C]// CPL-98 Workshop . El Segundo: The Aerospace Corporation, 1998.
38 JOUNG W, LEE J, LEE S, et al Derivation and validation of a figure of merit for loop heat pipes with medium temperature working fluids[J]. Journal of Heat Transfer, 2016, 138 (5): 052901
doi: 10.1115/1.4032534
39 GUO Y, LIN G, HE J, et al Supercritical startup strategy of cryogenic loop heat pipe with different working fluids[J]. Applied Thermal Engineering, 2019, 155: 267- 276
doi: 10.1016/j.applthermaleng.2019.04.008
40 CHERNYSHEVA M A, MAYDANIK Y F Numerical simulation of transient heat and mass transfer in a cylindrical evaporator of a loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2008, 51 (17/18): 4204- 4215
doi: 10.1016/j.ijheatmasstransfer.2007.12.021
41 CHERNYSHEVA M A, MAYDANIK Y F, OCHTERBECK J M Heat transfer investigation in evaporator of loop heat pipe during startup[J]. Journal of Thermophysics and Heat Transfer, 2008, 22 (4): 617- 622
doi: 10.2514/1.35519
42 KAYA T, PÉREZ R, GREGORI C, et al Numerical simulation of transient operation of loop heat pipes[J]. Applied Thermal Engineering, 2008, 28 (28): 967- 974
43 LEMMON E, BELL I H, HUBER M, et al. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 10.0, national institute of standards and technology [M]. Gaithersburg: NIST, 2018.
44 KU J. Operating characteristics of loop heat pipes [J]. SAE Transactions , 1999: 503−519.
45 王亦伟, 岑继文, 蒋方明, 等 充液量对回路热管性能的影响[J]. 光电子·激光, 2015, 26 (4): 676- 681
WANG Yiwei, CEN Jiwen, JIANG Fangming, et al The influence of filling ratio on the performance of loop heat pipe[J]. Journal of Optoelectronics·Laser, 2015, 26 (4): 676- 681
46 刘成, 吴亦农, 谢荣建, 等. 乙烷工质低温环路热管最佳充液率的研究[C]// 上海市制冷学会2017年学术年会. 上海: [s.n.], 2017: 112−117.
LIU Cheng, WU Yinong, XIE Rongjian, et al. Investigation on ideal filling ratio of an ethane charged cryogenic loop heat pipe [C]// 2017 Academic Annual Meeting of Shanghai Refrigeration Society . Shanghai: [s.n.], 2017: 112−117.
47 HE S, LIU Z, WANG D, et al Effect of different charge ratios on transient performance of a flat type of the LHP with a shared compensation chamber[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1075- 1081
doi: 10.1016/j.ijheatmasstransfer.2019.04.129
48 马宏, 王金波. 仪器精度理论 [M]. 北京: 北京航空航天大学出版社, 2009: 91−95.
[1] 倪佳华,项基,赵波. 基于空间域dP/dV计算的光伏控制方法[J]. 浙江大学学报(工学版), 2023, 57(7): 1450-1459.
[2] 王帅林,盛雷,齐丽娜,方奕栋,李康,苏林. 大型软包锂离子电池的热物性实验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1986-1992.
[3] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[4] 夏一帆,赵冬梅,葛海文,林其钊,郑耀,王高峰. 环形燃烧室点火过程的实验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(2): 416-424.
[5] 王郭俊,许洪国,刘宏飞. 双半挂汽车列车操纵稳定性分析[J]. 浙江大学学报(工学版), 2019, 53(2): 299-306.
[6] 韩联进, 巫江虹, 薛志强. 电动客车热泵空调系统仿真与改进[J]. 浙江大学学报(工学版), 2018, 52(4): 641-648.
[7] 童基均, 李琳, 林勤光, 朱丹华. 采用平滑伪Wigner-Ville分布的SSVEP脑机接口系统[J]. 浙江大学学报(工学版), 2017, 51(3): 598-604.
[8] 付宏勋, 赵又群, 林棻, 杜现斌, 倪新伟. 机械弹性车轮稳态侧偏特性的理论与试验分析[J]. 浙江大学学报(工学版), 2017, 51(2): 344-349.
[9] 胡向东,郭旺,张洛瑜. 直角绝热边界附近少量冻结管稳态温度场解析解[J]. J4, 2014, 48(3): 471-477.
[10] 朱丹华,陈大竞,陈裕泉,潘敏. 参数调节随机共振增强稳态视觉诱发电位[J]. J4, 2012, 46(5): 918-922.
[11] 薛文, 金伟良, 横田弘. 养护条件与暴露环境对氯离子传输的耦合作用[J]. J4, 2011, 45(8): 1416-1422.
[12] 邹涛, 李海强. 具有积分环节多变量系统的双层结构预测控制[J]. J4, 2011, 45(12): 2079-2087.
[13] 张伟勇, 李映, 黄德先, 伊佳, 张志印, 杨向党. 基于稳态模型的加热炉烟风系统控制[J]. J4, 2011, 45(12): 2093-2098.
[14] 杨陈, 郝志勇, 陈馨蕊. 热负荷对柴油机结构强度及密封性能的影响[J]. J4, 2010, 44(4): 756-760.
[15] 方文敏, 成琳琳, 傅新, 周华, 杨华勇. 带U形节流槽的滑阀稳态液动力研究[J]. J4, 2010, 44(3): 574-580.