Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (7): 1439-1449    DOI: 10.3785/j.issn.1008-973X.2023.07.019
能源与机械工程     
可调旋转式流体阻尼器参数多目标优化设计
曹晓彦(),于敏*(),周瑾,王运志
南京航空航天大学 机电学院,江苏 南京 210016
Multi-objective optimization design of adjustable rotary fluid damper parameter
Xiao-yan CAO(),Min YU*(),Jin ZHOU,Yun-zhi WANG
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(2158 KB)   HTML
摘要:

为了以最小几何公差制造成本实现直升机操纵系统良好的振动控制效果,开发新型可调旋转式流体阻尼器,对关键的几何参数进行多目标优化. 该阻尼器通过伺服电机带动转阀实现阻尼力的实时调节,实现直升机操纵系统的振动控制. 基于压力-流量公式,建立阻尼器准静态模型,分析结构几何参数对最大阻尼力矩、可调倍数的影响规律. 为了同时满足阻尼器输出力矩、动态可调范围及最小公差制造成本的要求,采用非支配排序遗传算法(NSGA-II)对各结构参数进行多目标优化设计,确定阻尼器的最佳结构设计参数. 结果表明,多目标优化设计能够在满足阻尼器力学特性的前提下实现尽可能小的公差制造成本. 对制作的可调旋转式流体阻尼器样机进行力学性能测试,验证了基于准静态模型的阻尼器参数多目标优化结果的正确性.

关键词: 可调阻尼器多目标优化旋转式阻尼器响应面分析灵敏度分析直升机操纵系统    
Abstract:

A new adjustable rotary fluid damper was developed in order to achieve good vibration control effect of helicopter control system with minimum geometric tolerance manufacturing cost. The multi-objective optimization of key geometric parameters was conducted. The rotary valve was driven through a servo motor to realize the real-time adjustment of the damping force in order to realize the vibration control of the helicopter control system. A quasi-static model of the damper was established based on the pressure-flow formula. The influence of structural geometric parameters on the maximum damping torque and adjustable multiple was analyzed. The non-dominated sorting genetic algorithm II (NSGA-II) was used to conduct multi-objective optimization of each structural parameter in order to meet the requirements of damper output torque, dynamic adjustable range and minimum tolerance manufacturing cost at the same time. The optimal structural design parameters of the damper were obtained. Results show that the multi-objective optimal design can achieve the minimum manufacturing cost of tolerance on the premise of satisfying the mechanical properties of the damper. The correctness of the multi-objective optimization results of the damper parameters based on the quasi-static model was verified through the mechanical performance test of the prototype of the adjustable rotary fluid damper.

Key words: adjustable damper    multi-objective optimization    rotary damper    response surface analysis    sensitivity analysis    helicopter control system
收稿日期: 2022-07-09 出版日期: 2023-07-17
CLC:  TB 535  
通讯作者: 于敏     E-mail: caoxiaoyan0621@nuaa.edu.cn;yumin@nuaa.edu.cn
作者简介: 曹晓彦(1987—),男,博士生,从事阻尼减振及控制的研究. orcid.org/0000-0002-3575-0456.E-mail: caoxiaoyan0621@nuaa.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曹晓彦
于敏
周瑾
王运志

引用本文:

曹晓彦,于敏,周瑾,王运志. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版), 2023, 57(7): 1439-1449.

Xiao-yan CAO,Min YU,Jin ZHOU,Yun-zhi WANG. Multi-objective optimization design of adjustable rotary fluid damper parameter. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1439-1449.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.019        https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1439

图 1  可调旋转式流体阻尼器的设计方案
图 2  可调旋转式流体阻尼器的结构参数图
参数 初始值
Ds/mm 46
Dr/mm 22
Ly/mm 38
μ /(kg·m?1·s?1) 1.17×10?2
b1/mm 5
b2/mm 6
dh/mm 1.5
δ1/mm 初始值0.03
公差(0.01~0.03)
δ2/mm 初始值0.03
公差(0.01~0.03)
δ3/mm 初始值0.03
公差(0.01~0.03)
lr/mm 3
αr/(°) 9
ω/(rad·s?1) 0.229
表 1  可调旋转式流体阻尼器的结构参数初值
图 3  转阀全闭时结构参数对阻尼力矩的影响
图 4  转阀全闭时的结构参数灵敏度分析
图 5  结构参数对阻尼力矩可调范围的影响
图 6  结构参数对阻尼力矩可调范围影响的灵敏度分析
图 7  NSGA-II的求解流程图
图 8  Pareto解集的分布及投影图
序号 f1 f2 f3
1 ?3.549 ?8.139 1069.473
2 ?3.584 ?8.093 1067.954
3 ?3.586 ?8.198 1073.108
修正后 ?3.635 ?8.205 1067.954
表 2  选取的Pareto解
mm
序号 δ1U δ2U δ3U dh Ds Dr Ly
1 0.042 0.040 0.046 1.981 48.86 20.13 38.97
2 0.042 0.039 0.047 1.995 48.77 20.07 38.89
3 0.041 0.040 0.047 1.979 48.63 20.20 39.09
修正后 0.042 0.039 0.047 2 49 20 39
表 3  选取的Pareto解的结构参数值
图 9  阻尼力矩随角速度的变化
图 10  可调倍数随角速度的变化
图 11  阻尼器样机图
图 12  阻尼器测试装置图
图 13  阻尼器性能测试的结果
1 贾金亮. 共轴刚性双旋翼直升机操纵系统设计研究[D]. 南京: 南京航空航天大学, 2013: 1-5.
JIA Jin-liang. Research on control system of coaxial rigid twin-rotor helicopter [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 1-5.
2 王放, 陈铭, 徐冠峰 直升机操纵杆振动特性测量与分析[J]. 航空动力学报, 2013, 28 (10): 2209- 2215
WANG Fang, CHEN Ming, XU Guan-feng Measurement and analysis of helicopter control stick vibration characteristics[J]. Journal of Aerospace Power, 2013, 28 (10): 2209- 2215
3 CAO X Y, YU M, ZHOU J, et al Modeling and experimental verification of a semi-rotary fluid damper based on an improved Kelvin model[J]. Arabian Journal for Science and Engineering, 2021, 46 (8): 7587- 7596
doi: 10.1007/s13369-021-05414-z
4 IMADUDDIN F, MAZLAN S A, ZAMZURI H A design and modelling review of rotary magnetorheological damper[J]. Materials and Design, 2013, 51: 575- 591
doi: 10.1016/j.matdes.2013.04.042
5 CAO X Y, YU M, ZHOU J, et al Modeling and control of helicopter flight control system with a controllable semi-rotary fluid viscous damper[J]. Alexandria Engineering Journal, 2022, 61 (12): 12725- 12738
doi: 10.1016/j.aej.2022.06.035
6 YANG C B, GAO X D, LIU Z F, et al. Modeling and analysis of the vibration characteristics of a new type of in-arm hydropneumatic suspension of a tracked vehicle [J]. Journal of Vibroengineering. 2016, 18(7): 4627-4646.
7 ARELEKATTI V N M, PETELINA N T, JOHNSON W B, et al. Design of a passive, shear-based rotary hydraulic damper for single-axis prosthetic knees [C]// 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Quebec: ASME, 2018: DETC2018-85962.
8 JEHLE G, FIDLIN A Hydrodynamic optimized vibration damper[J]. Journal of Sound and Vibration, 2019, 440: 100- 112
doi: 10.1016/j.jsv.2018.10.008
9 孙宝凤, 张新康, 李根道, 等 第Ⅱ类机器人混流装配线的平衡与排序联合决策[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1097- 1106
SUN Bao-feng, ZHANG Xin-kang, LI Gen-dao, et al Joint decision-making of balancing and sequencing for type-Ⅱ robotic mixed-model assembly line[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1097- 1106
10 HU H N, JIAN Z, LIU X H, et al Multi-objective optimal design and performance of magnetorheological damper[J]. Materialwissenschaft und Werkstofftechnik, 2021, 52 (5): 540- 547
doi: 10.1002/mawe.202000175
11 ZHANG W, HAN B B, LI X, et al Multi-objective system optimization method and experimental validation of a centralized squeeze film damper using a cell mapping method considering dynamic constraints[J]. Engineering Optimization, 2021, 53 (6): 941- 961
doi: 10.1080/0305215X.2020.1759577
12 HAO Y D, HE Z C, LI G Y, et al Uncertainty analysis and optimization of automotive driveline torsional vibration with a driveline and rear axle coupled model[J]. Engineering Optimization, 2018, 50 (11): 1871- 1893
doi: 10.1080/0305215X.2017.1421952
13 XU F H, DONG D W, HUANG Y, et al A comprehensive optimal design method for magnetorheological dampers utilized in DMU power package[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236 (3): 533- 547
14 NGUYEN Q H, CHOI S B, WOO J K Optimal design of magnetorheological fluid-based dampers for front-loaded washing machines[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228 (2): 294- 306
doi: 10.1177/0954406213485908
15 高晓东, 顾亮, 管继富, 等 履带车辆肘内式半主动油气悬挂性能研究[J]. 振动. 测试与诊断, 2015, 35 (5): 968- 972
GAO Xiao-dong, GU Liang, GUAN Ji-fu, et al Study on the performance of semi-active in-arm hydro-pneumatic suspension for tracked vehicle[J]. Journal of Vibration Measurement and Diagnosis, 2015, 35 (5): 968- 972
16 毛建中, 王路翔, 毛歅博, 等 节流方式对扭转减振器的影响[J]. 湖南大学学报: 自然科学版, 2012, 39 (5): 33- 37
MAO Jian-zhong, WANG Lu-xiang, MAO Yin-bo, et al Effect of the throttle on the torsion damp shock absorber[J]. Journal of Hunan University: Natural Sciences, 2012, 39 (5): 33- 37
17 HAMBY D M A review of techniques for parameter sensitivity analysis of environmental models[J]. Environmental Monitoring and Assessment, 1994, 32 (2): 135- 154
doi: 10.1007/BF00547132
18 JIANG M, RUI X T, ZHU W, et al Parameter sensitivity analysis and optimum model of the magnetorheological damper's Bouc-Wen model[J]. Journal of Vibration and Control, 2021, 27 (19/20): 2291- 2302
19 谢慧超, 姜潮, 张智罡, 等 基于区间分析的汽车平顺性优化[J]. 汽车工程, 2014, 36 (9): 1127- 1131
XIE Hui-chao, JIANG Chao, ZHANG Zhi-gang, et al Vehicle ride comfort optimization based on interval analysis[J]. Automotive Engineering, 2014, 36 (9): 1127- 1131
20 郝耀东, 何智成, 李光耀, 等 考虑公差的扭转动力吸振器不确定性优化设计[J]. 中国机械工程, 2018, 29 (14): 1645- 1652
HAO Yao-dong, HE Zhi-cheng, LI Guang-yao, et al Uncertain optimization of torsional vibration damper considering tolerant design[J]. China Mechanical Engineering, 2018, 29 (14): 1645- 1652
doi: 10.3969/j.issn.1004-132X.2018.14.002
21 JIANG M, RUI X T, YANG F F, et al Multi-objective optimization design for a magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 2022, 33 (1): 33- 45
doi: 10.1177/1045389X211006907
22 SAINI R, CHANDRAMOHAN S, SUJATHA S, et al Design of bypass rotary vane magnetorheological damper for prosthetic knee application[J]. Journal of Intelligent Material Systems and Structures, 2021, 32 (9): 931- 942
doi: 10.1177/1045389X20942577
23 郑玲, 牛伯瑶, 李以农, 等 基于遗传算法的汽车磁流变减振器多目标优化[J]. 汽车工程, 2016, 38 (7): 871- 877
ZHENG Ling, NIU Bo-yao, LI Yi-nong, et al Multi-objective optimization of vehicle MR damper based on genetic algorithm[J]. Automotive Engineering, 2016, 38 (7): 871- 877
doi: 10.3969/j.issn.1000-680X.2016.07.013
24 董小闵, 丁飞耀, 管治, 等 面向高速的磁流变缓冲器多目标优化设计及性能研究[J]. 机械工程学报, 2014, 50 (5): 127- 134
DONG Xiao-min, DING Fei-yao, GUAN Zhi, et al Multi-objective optimization and performance research of magneto-rheological absorber under high speed[J]. Journal of Mechanical Engineering, 2014, 50 (5): 127- 134
doi: 10.3901/JME.2014.05.127
[1] 余廷芳,宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414.
[2] 王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.
[3] 徐钧恒,杨晓钧,李兵. 基于交叉簧片式铰链的变弯度机翼机构设计[J]. 浙江大学学报(工学版), 2022, 56(3): 444-451, 509.
[4] 李颖,王冠雄,闫伟,赵营鸽,马重蕾. 改进的稀疏网格配点法对EIT电导率分布的不确定性量化[J]. 浙江大学学报(工学版), 2022, 56(3): 613-621.
[5] 邓齐林,鲁娟,陈勇辉,冯健,廖小平,马俊燕. 基于深度强化学习的数控铣削加工参数优化方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2145-2155.
[6] 陈俊杰,李洪均,曹张华. 性能感知的核心网控制面资源分配算法[J]. 浙江大学学报(工学版), 2021, 55(9): 1782-1787.
[7] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
[8] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[9] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[10] 黄华,邓文强,李源,郭润兰. 基于空间动力学优化的机床结构件质量匹配设计[J]. 浙江大学学报(工学版), 2020, 54(10): 2009-2017.
[11] 童水光,赵航,刘会琴,童哲铭,余跃,唐宁,吴伟杰,李进富,从飞云,张昊,王寅华,郝国帅. 中开多级离心泵效率优化计算方法[J]. 浙江大学学报(工学版), 2019, 53(5): 988-996.
[12] 程锋,张栋,唐硕. 高超声速运载器宽速域气动/推进耦合建模与分析[J]. 浙江大学学报(工学版), 2019, 53(5): 1006-1018.
[13] 周瑾,高天宇,陈怡,席鸿皓. 采用动力测试的双转子卧螺离心机模型修正[J]. 浙江大学学报(工学版), 2019, 53(2): 241-249.
[14] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.
[15] 张德胜, 刘安, 陈健, 赵睿杰, 施卫东. 采用粒子群算法的水平轴潮流能水轮机翼型多目标优化[J]. 浙江大学学报(工学版), 2018, 52(12): 2349-2355.