Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1191-1198    DOI: 10.3785/j.issn.1008-973X.2022.06.017
能源与机械工程     
液滴撞击加热亲水管壁后的反弹和中心射流
王开珉(),张玉杰,康培森,刘宏升,刘晓华*()
大连理工大学 能源与动力学院,海洋能源利用与节能教育部重点实验室,辽宁 大连 116024
Droplet rebound and central jet after impacting hydrophilic tubular surface
Kai-min WANG(),Yu-jie ZHANG,Pei-sen KANG,Hong-sheng LIU,Xiao-hua LIU*()
School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
 全文: PDF(1575 KB)   HTML
摘要:

采用高速摄像机拍摄水滴撞击加热亲水管壁的动态过程,研究在不同撞击速度(韦伯数)和壁面温度下,液滴撞击后出现的液膜反弹和中心射流现象. 不同于液滴撞击常温亲水管壁,液滴撞击加热亲水管壁后会反弹. 在曲率比(液滴直径与管外壁直径的比值)为0.15,撞击速度为0.47~1.40 m/s,壁面温度为20~305 ℃的条件下,观测到“回缩?反弹”“铺展?反弹”和“破碎?反弹”3种反弹形式,总结其发生条件. 壁面温度是决定液滴撞击后能否发生反弹的关键因素,壁面温度和韦伯数均对“破碎?反弹”的产生有显著影响. 从重力、惯性力和气化反作用力角度分析产生快速“铺展?反弹”现象的原因. 分析中心射流形成原因,发现增加壁面温度和韦伯数有利于不完全中心射流的形成.

关键词: 液滴撞击加热管壁撞击速度中心射流液膜反弹    
Abstract:

The dynamic characteristics of water droplet impacting a hydrophilic tubular surface were recorded by a high-speed camera, the droplet rebound and central jet were studied under different impact velocities (Weber number) and surface temperatures. The droplet can rebound after impacting a heated hydrophilic tubular surface, while not for a hydrophilic tubular surface of room temperature. The curvature ratio (the ratio of droplet diameter to tube outer diameter) was 0.15, impact velocity ranged from 0.47 to 1.40 m/s, and the surface temperature ranged from 20 to 305 ℃, three rebound forms were observed: “retraction-rebound” “spread-rebound” and “splash-rebound”, the formation conditions of which were summarized. The surface temperature determines whether droplet can rebound or not, it, as well as Weber number can influence the formation of “splash-rebound” significantly. The formation of a fast “spread-rebound” was analyzed from the gravity, inertial force, and gasification reaction force. The formation of central jet was analyzed, the increase in the surface temperature and Weber number were beneficial to the occurrence of the incomplete central jet.

Key words: droplet impact    heated tubular surface    impact velocity    central jet    droplet rebound
收稿日期: 2021-08-01 出版日期: 2022-06-30
CLC:  O 359  
基金资助: 辽宁省中央引导地方科技发展专项项目(2021JH6/10500150);国家自然科学基金资助项目(51476017,51576029)
通讯作者: 刘晓华     E-mail: kmwang_9410@mail.dlut.edu.cn;lxh723@dlut.edu.cn
作者简介: 王开珉(1994—),男,博士生,从事液滴撞击过程研究. orcid.org/0000-0002-1753-3116. E-mail: kmwang_9410@mail.dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王开珉
张玉杰
康培森
刘宏升
刘晓华

引用本文:

王开珉,张玉杰,康培森,刘宏升,刘晓华. 液滴撞击加热亲水管壁后的反弹和中心射流[J]. 浙江大学学报(工学版), 2022, 56(6): 1191-1198.

Kai-min WANG,Yu-jie ZHANG,Pei-sen KANG,Hong-sheng LIU,Xiao-hua LIU. Droplet rebound and central jet after impacting hydrophilic tubular surface. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1191-1198.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.017        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1191

图 1  液滴撞击加热管壁的实验系统示意图
图 2  液滴撞击管壁过程的物理模型
图 3  不同初始撞击速度下液滴撞击加热管壁的动态过程(θW = 260 ℃)
图 4  不同韦伯数、壁面温度下的液膜反弹
图 5  不同壁面温度下液滴撞击加热管壁的动态过程(We = 31.0)
图 6  中心射流现象放大图(vo = 1.40 m/s,θW = 260 ℃)
图 7  不完全的中心射流现象(v0 = 1.24 m/s,θW = 260 ℃)
图 8  不同韦伯数、壁面温度下液膜的中心射流情况
1 LIU X H, WANG K M, FANG Y Q, et al Study of the surface wettability effect on dynamic characteristics of droplet impacting a tube with different curvature ratios[J]. Experimental Thermal and Fluid Science, 2020, 115: 110060
doi: 10.1016/j.expthermflusci.2020.110060
2 胡定华, 刘诗雨 Al2O3纳米流体液滴撞击壁面的动力学行为数值研究 [J]. 浙江大学学报:工学版, 2021, 55 (5): 991- 998
HU Ding-hua, LIU Shi-yu Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall [J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 991- 998
3 NEGEED E R, ISHIHARA N, TAGASHIRA K, et al Experimental study on the effect of surface conditions on evaporation of sprayed liquid droplet[J]. International Journal of Thermal Sciences, 2010, 49 (12): 2250- 2271
doi: 10.1016/j.ijthermalsci.2010.08.008
4 MITRA S, SATHE M J, DOROODCHI E, et al Droplet impact dynamics on a spherical particle[J]. Chemical Engineering Science, 2013, 100: 105- 119
doi: 10.1016/j.ces.2013.01.037
5 RIBOUX G AND GORDILLO J. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing[J]. Physical Review Letters, 2014, 113: 024507
doi: 10.1103/PhysRevLett.113.024507
6 汪焰恩, 周金华, 秦琰磊, 等 液滴撞击固体球面行为特性的数值研究[J]. 振动与冲击, 2012, 31 (20): 51- 55
WANG Yan-en, ZHOU Jin-hua, QIN Yan-lei, et al Numerical simulation for behavior of a droplet impacting onto a target spherical surface[J]. Journal of Vibration and Shock, 2012, 31 (20): 51- 55
7 杜敏, 宋亮, 孙文涛, 等 液滴与球形颗粒相互碰撞的数值模拟[J]. 江苏大学学报:自然科学版, 2021, 42 (3): 284- 290
DU Min, SONG Liang, SUN Wen-tao, et al Numerical simulation of a droplet colliding with a spherical particle[J]. Journal of Jiangsu University: Natural Science Edition, 2021, 42 (3): 284- 290
8 LIU X H, WANG K M, FANG Y Q, et al Study of the effect of surface wettability on droplet impact on spherical surfaces[J]. International Journal of Low-Carbon Technologies, 2020, 15 (3): 414- 420
doi: 10.1093/ijlct/ctz077
9 李栋, 王鑫, 高尚文, 等 单液滴撞击超疏水冷表面的反弹及破碎行为[J]. 化工学报, 2017, 68 (6): 2473- 2482
LI Dong, WANG Xin, GAO Shang-wen, et al Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J]. CIESC Journal, 2017, 68 (6): 2473- 2482
10 WANG K M, CHEN H, GE H Y, et al Study of impact velocity and curvature ratio on the dynamic characteristics of double droplets impacting super-hydrophobic tubes[J]. Physics of Fluids, 2021, 33: 013301
doi: 10.1063/5.0035624
11 代超, 纪献兵, 周冬冬, 等 液滴碰撞不同湿润性表面的行为特征[J]. 浙江大学学报:工学版, 2018, 52 (1): 36- 42
DAI Chao, JI Xian-bing, ZHOU Dong-dong, et al Behavioral characteristics of droplet collision to different wettability surfaces[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (1): 36- 42
12 WANG K M, LIU X H, CHEN H, et al Droplet ejection after impacting a hydrophobic flat surface at different impact velocities[J]. Interfacial Phenomena and Heat Transfer, 2020, 8 (2): 107- 115
doi: 10.1615/InterfacPhenomHeatTransfer.2020033904
13 付清腾, 郭飞, 刘晓华 采用加湿除湿技术处理浓盐水的实验研究[J]. 浙江大学学报:工学版, 2019, 53 (11): 2231- 2237
FU Qing-teng, GUO Fei, LIU Xiao-hua Experimental study of high salinity water treatment by humidification-dehumidification technology[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (11): 2231- 2237
14 梁超, 王宏, 朱恂, 等 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64 (8): 2745- 2751
LIANG Chao, WANG Hong, ZHU Xun, et al Numerical simulation of droplet impact on surfaces with different wettabilities[J]. CIESC Journal, 2013, 64 (8): 2745- 2751
15 梁刚涛, 郭亚丽, 沈胜强 液滴低速撞击润湿球面现象观测分析[J]. 物理学报, 2013, 62 (18): 184703
LIANG Gang-tao, GUO Ya-li, SHEN Sheng-qiang Observation and analysis of drop impact on wetted spherical surfaces with low velocity[J]. Acta Physica Sinica, 2013, 62 (18): 184703
doi: 10.7498/aps.62.184703
16 BLACK K, BERTOLA V. Drop impact morphology on heated surfaces [C]// DIPSI Workshop 2012 on Droplet Impact Phenomena and Spray Investigation, Bergamo: [s.n.], 2012: 1–5.
17 韩毅, 赵增武, 张亚竹, 等 液滴流撞击热金属表面铺展行为实验研究[J]. 铸造技术, 2016, 37 (12): 2624- 2628
HAN Yi, ZHAO Zeng-wu, ZHANG Ya-zhu, et al Experimental study on spreading behavior of droplets stream impacting hot metal surface[J]. Foundry Technology, 2016, 37 (12): 2624- 2628
18 荣松, 沈世全, 王天友, 等 液滴撞击加热壁面雾化弹起模式及驻留时间[J]. 物理学报, 2019, 68 (15): 154701
RONG Song, SHEN Shi-quan, WANG Tian-you, et al Bouncing-with-spray mode and residence time of droplet impact on heated surfaces[J]. Acta Physica Sinica, 2019, 68 (15): 154701
doi: 10.7498/aps.68.20190097
19 梁刚涛, 牟兴森, 郭亚丽, 等 液滴冲击加热壁面沸腾现象特征分析[J]. 化工学报, 2016, 67 (6): 2211- 2217
LIANG Gang-tao, MU Xing-sen, GUO Ya-li, et al Characteristic analyses of boiling phenomena in process of drops impingement on heated surfaces[J]. CIESC Journal, 2016, 67 (6): 2211- 2217
20 ZHANG H X, ZHANG X W, YI X, et al Asymmetric splash and breakup of drops impacting on cylindrical superhydrophobic surfaces[J]. Physics of Fluids, 2020, 32: 122108
doi: 10.1063/5.0032910
21 孙炎俊, 赵丹阳 液滴撞击高温曲面动力学特性试验研究[J]. 表面工程与再制造, 2018, 18 (2): 28- 32
SUN Yan-jun, ZHAO Dan-yang Experimental study on dynamic characteristics of droplet impact on high temperature tubular surface[J]. Surface Engineering and Remanufacturing, 2018, 18 (2): 28- 32
doi: 10.3969/j.issn.1672-3732.2018.02.013
22 宋锋毅, 郭亚丽, 王峰, 等 液滴撞击圆柱外表面蒸发换热的数值模拟[J]. 哈尔滨工业大学学报, 2018, 50 (1): 114- 120
SONG Feng-yi, GUO Ya-li, WANG Feng, et al Numerical simulation of evaporation and heat transfer of droplet impacting on cylindrical outer surface[J]. Journal of Harbin Institute of Technology, 2018, 50 (1): 114- 120
doi: 10.11918/j.issn.0367-6234.201704051
23 沈胜强, 张洁珊, 梁刚涛 液滴撞击加热壁面传热实验研究[J]. 物理学报, 2015, 64 (13): 134704
SHEN Sheng-qiang, ZHANG Jie-shan, LIANG Gang-tao Experimental study of heat transfer from droplet impact on a heated surface[J]. Acta Physica Sinica, 2015, 64 (13): 134704
doi: 10.7498/aps.64.134704
24 GE Y, FAN L S Droplet–particle collision mechanics with film-boiling evaporation[J]. Journal of Fluid Mechanics, 2007, 573: 311- 337
doi: 10.1017/S0022112006003922
25 MITRA S, NGUYEN T B T, DOROODCHI E, et al On wetting characteristics of droplet on a spherical particle in film boiling regime[J]. Chemical Engineering Science, 2016, 149: 181- 203
doi: 10.1016/j.ces.2016.04.003
26 唐鹏博, 王关晴, 王路, 等 单液滴正碰球面动态行为特性实验研究[J]. 物理学报, 2020, 69 (2): 024702
TANG Peng-bo, WANG Guan-qing, WANG Lu, et al Experimental investigation on dynamic behavior of single droplet impcating normally on dry sphere[J]. Acta Physica Sinica, 2020, 69 (2): 024702
doi: 10.7498/aps.69.20191141
27 施明恒 运动液滴的LEIDENFROST现象[J]. 南京工学院学报, 1985, 3: 83- 88
SHI Ming-heng The Leidenfrost temperature of a falling liquid droplet[J]. Journal of Nanjing Institute of Technology, 1985, 3: 83- 88
28 LIANG G T, ZHANG T Y, CHEN L Z, et al Single-phase heat transfer of multi-droplet impact on liquid film[J]. International Journal of Heat and Mass Transfer, 2019, 132: 288- 292
doi: 10.1016/j.ijheatmasstransfer.2018.11.145
29 COSSALI G E, MARENGO M, SANTINI M Thermally induced secondary drop atomisation by single drop impact onto heated surfaces[J]. International Journal of Heat and Fluid Flow, 2008, 29 (1): 167- 177
doi: 10.1016/j.ijheatfluidflow.2007.09.006
30 BREITENBACH J, KISSING J, ROISMAN I V, et al Characterization of secondary droplets during thermal atomization regime[J]. Experimental Thermal and Fluid Science, 2018, 98: 516- 522
doi: 10.1016/j.expthermflusci.2018.06.030
[1] 黄钰期,陈卓烈,胡军强,李梅,牛昊一. 活塞内冷油腔两相流振荡可视化模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 435-441.
[2] 郑帅,谭大鹏,李霖,朱吟龙. 微反应器计算流体力学与离散元建模及调控[J]. 浙江大学学报(工学版), 2019, 53(7): 1237-1251.
[3] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[4] 沙东辉,骆仲泱,鲁梦诗,江建平,方梦祥,周栋,陈浩. 带正电颗粒电凝并的显微可视化研究[J]. 浙江大学学报(工学版), 2016, 50(1): 93-101.
[5] 江建平, 骆仲泱, 陈浩, 周栋, 沙东辉, 方梦祥, 岑可法. 2种常用颗粒物粒径表征方法的对比[J]. 浙江大学学报(工学版), 2015, 49(12): 2326-2332.
[6] 谭超, 魏正英, 胡福胜, 李本强, 韩志海. 等离子喷涂过程数值计算与实验研究[J]. 浙江大学学报(工学版), 2014, 48(12): 2284-2292.
[7] 计时鸣, 曾晰, 金明生, 谭大鹏. 基于修正Preston方程的气压砂轮加工特性[J]. J4, 2013, 47(7): 1299-1306.
[8] 计时鸣, 李琛, 谭大鹏, 张利, 付有志, 王迎春. 软性磨粒流加工方法及近壁区域特性[J]. J4, 2012, 46(10): 1764-1772.
[9] 杜军,魏正英,熊孝东,何威,唐一平. 纳米压印模具及膜厚对抗蚀剂填充特性的影响[J]. J4, 2012, 46(7): 1175-1181.
[10] 罗坤, 金台, 樊建人, 岑可法. 网格尺寸对液滴蒸发的影响[J]. J4, 2011, 45(12): 2176-2180.
[11] 计时鸣, 翁晓星, 谭大鹏. 基于水平集方法的软性磨粒两相流场特性分析[J]. J4, 2011, 45(12): 2222-2228.
[12] 聂德明,林建忠. 模拟颗粒布朗运动的格子Boltzmann模型[J]. J4, 2009, 43(8): 1438-1442.