Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (3): 435-441    DOI: 10.3785/j.issn.1008-973X.2020.03.002
机械工程     
活塞内冷油腔两相流振荡可视化模拟
黄钰期1(),陈卓烈1,胡军强2,*(),李梅2,牛昊一1
1. 浙江大学 动力机械及车辆工程研究所,浙江 杭州 310058
2. 中船重工第711研究所,上海 201108
Visual simulation of two-phase flow oscillating flow in piston cooling gallery
Yu-qi HUANG1(),Zhuo-lie CHEN1,Jun-qiang HU2,*(),Mei LI2,Hao-yi NIU1
1. Power Machinery Vehicular Engineer Institute, Zhejiang University, Hangzhou 310058, China
2. Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China
 全文: PDF(1579 KB)   HTML
摘要:

设计并搭建一个活塞振荡两相流可视化模拟试验台,利用3D打印技术还原某型号柴油机的活塞内冷油腔,针对甘油水溶液以及大豆油2种不同的冷却介质,在可视化拍摄流场图像的同时,收集出油数据并计算通过率. 研究发现,所采用的试验方法可摒弃喷油飞溅干扰,准确采集出油量数据,获得了清晰可辨的可视化图像. 将拍摄结果进行对比分析,并对两相流振荡的流型进行辨识和分类,发现当雷诺数达到20 000以上时,两相流振荡的流动状态会发生明显变化,流动进入强湍流状态.

关键词: 两相流振荡模拟油腔可视化试验流型分析雷诺数    
Abstract:

The experimental platform for two-phase flow oscillating flow visualization experiment was designed and established, by using 3D printing technology to restore the cooling gallery in a certain type of diesel engine piston. For the two different cooling media, glycerin aqueous solution and soybean oil, oil output data was collected and the oil pass rate was calculated while the flow field images were taken visually. The oil data was collected and the pass rate was calculated while taking visual image of flow field for two different fluid medium. Results show that the proposed test method can abandon the spray splash interference, collect the oil output data, obtain a clear and identifiable visual image. The photographic results were compared and analyzed, and the flow patterns of two-phase flow oscillating flow were identified and classified. As results, when the Reynolds number is above 20 000, the flow state of the two-phase flow oscillating flow changes significantly and enter strong turbulent state.

Key words: two-phase flow oscillating    simulated cooling gallery    visual experiment    flow pattern analysis    Reynolds number
收稿日期: 2019-01-29 出版日期: 2020-03-05
CLC:  O 359  
基金资助: 国家自然科学基金资助项目(51206141,91741203)
通讯作者: 胡军强     E-mail: huangyuqi@zju.edu.cn;hujunqiang@csic711.com
作者简介: 黄钰期(1979—),女,副教授,从事车辆及动力电池热管理、余热回收研究.orcid.org/0000-0003-3152-5021. E-mail: huangyuqi@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄钰期
陈卓烈
胡军强
李梅
牛昊一

引用本文:

黄钰期,陈卓烈,胡军强,李梅,牛昊一. 活塞内冷油腔两相流振荡可视化模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 435-441.

Yu-qi HUANG,Zhuo-lie CHEN,Jun-qiang HU,Mei LI,Hao-yi NIU. Visual simulation of two-phase flow oscillating flow in piston cooling gallery. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 435-441.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.002        http://www.zjujournals.com/eng/CN/Y2020/V54/I3/435

图 1  内冷油腔三维模型及试件安装方式
图 2  两相流振荡可视化试验台原理图
图 3  喷油嘴三维模型图
冷却介质 $\rho $/(kg·m?3 $\nu $/(N·s·m?2
甘油水溶液 1 260 0.016 8
大豆油 920 0.068 5
表 1  冷却介质物性参数
图 4  当喷油流量为0.015 kg/s时不同转速下内冷油腔下止点腔内甘油水溶液流动状态
图 5  当喷油流量为0.025 kg/s时,不同转速下内冷油腔在不同曲轴转角时的腔内介质流动状态
序号 N/(r·min?1) $V$/mL ${t_0}$/s ${Q_{{\rm{out}}}}$/(mL·s?1) $\phi $/% $\overline \phi $/%
1 200 302 1.74 17.48 89.62 91.49
2 264 17.32 88.81
3 298 18.73 96.05
4 300 240 1.45 15.82 81.12 82.83
5 254 15.87 81.38
6 236 16.77 86.00
7 400 230 1.07 15.88 81.44 79.42
8 218 14.38 73.74
9 247 16.20 83.08
10 500 202 0 11.78 59.94 52.77
11 220 10.06 51.59
12 228 9.12 46.79
13 600 184 0 9.32 47.82 43.69
14 187 8.46 43.37
15 178 7.78 39.89
表 2  当喷油流量为0.025 kg/s时甘油水溶液试验数据
图 6  甘油水溶液与大豆油通过率对比
图 7  当泵压为0.5 MPa时,不同转速下在内冷油腔分别位于上、下止点时的大豆油流动形态
N/(r·min?1) v/(m·s?1) Re
甘油水溶液 大豆油 实机机油
200 2.31 10 568 1 893 7 129
300 3.46 15 830 2 835 10 679
400 4.62 21 137 3 785 14 259
500 5.77 26 398 4 727 17 808
600 6.93 31 704 5 678 21 388
1 858 20.78 64 134
表 3  不同转速下的甘油水溶液、大豆油、实机机油雷诺数
N/(r·min?1 $Re$ N/(r·min?1 $Re$
400 14 042 800 28 085
500 17 553 900 31 595
600 21 063 1 000 35 106
700 24 574 ? ?
表 4  不同转速下的直腔试验雷诺数
图 8  雷诺数与流态对应关系
1 DWORSCHAK J, FELTES R, FORTNER T, et al BMW公司装用3个涡轮增压器的新型6缸两级增压柴油机(第2部分)一进气系统、冷却系统和废气系统[J]. 国外内燃机, 2014, 46 (1): 13- 16
DWORSCHAK J, FELTES R, FORTNER T, et al BMW's new 6-cylinder two-stage supercharged diesel engine with 3 turbochargers (Part 2)-Intake system, cooling system and exhaust system[J]. Foreign Internal Combustion Engine, 2014, 46 (1): 13- 16
2 张卫正, 曹元福, 原彦鹏, 等 基于CFD的活塞振荡冷却的流动与传热仿真研究[J]. 内燃机学报, 2010, 28 (1): 74- 78
ZHANG Wei-zheng, CAO Yuan-fu, YUAN Yan-peng Simulation study of flow and heat transfer in oscillating cooling pistons based on CFD[J]. Transactions of CSICE, 2010, 28 (1): 74- 78
3 KAJIWARA H, FUJIOKA Y, NEGISHI H. Prediction of temperatures on pistons with cooling gallery in diesel engines using CFD tool [C] // SAE 2003 World Congress and Exhibition. [S.l.]: SAE, 2003.
4 LIU H, BAI M L, LV J Z, et al Heat transfer analysis of piston cooling using nanofluids in the gallery[J]. Micro and Nano Letters, 2015, 10 (1): 28- 33
5 TORREGROSA A J, BROATCH A, OLMEDA P, et al A contribution to film coefficient estimation in piston cooling galleries[J]. Experimental Thermal and Fluid Science, 2010, 34 (2): 142- 151
doi: 10.1016/j.expthermflusci.2009.10.003
6 KIRMSE C J W, OYEWUMI O A, TALEB A I, et al A two-phase single-reciprocating-piston heat conversion engine: non-linear dynamic modelling[J]. Applied Energy, 2017, 186 (part 3): 359- 375
7 曹元福, 张卫正, 杨振宇, 等 封闭空腔中多相流振荡传热特性的数值模拟[J]. 化工学报, 2013, 64 (3): 891- 896
CAO Yuan-fu, ZHANG Wei-zheng, YANG Zhen-yu, et al Numerical simulation of oscillating heat transfer characteristics in cavity partly filled with cooling liquid[J]. CIESC Journal, 2013, 64 (3): 891- 896
doi: 10.3969/j.issn.0438-1157.2013.03.015
8 LUFF D C, LAW T, SHAYLER P J The effect of piston cooling jets on diesel engine piston temperatures, emission and fuel consumption[J]. SAE Technical Papers, 2012, 5 (3): 1300- 1311
9 HERON S D. History of sodium-cooled piston development[R]. Richmond: Ethyl Corporation Report ERM, 1958.
10 BUSH J E, LONDON A L Design data for "cocktail shaker" cooled pistons and valves[J]. SAE Transactions, 1966, 446- 459
11 FU W S, LIAN S H, HAO L Y An investigation of heat transfer of a reciprocating piston[J]. International Journal of Heat and Mass Transfer, 2006, 49 (23): 4360- 4371
12 谭建松, 俞小莉 高强化发动机活塞冷却方式仿真[J]. 兵工学报, 2006, 27 (1): 97- 100
TAN Jian-song, YU Xiao-li The simulation for cooling method of piston in high-duty engine[J]. Acta Armamentarii, 2006, 27 (1): 97- 100
doi: 10.3321/j.issn:1000-1093.2006.01.022
13 邓晰文, 雷基林, 文均, 等 柴油机活塞二阶运动对内冷油腔机油振荡流动与传热的影响[J]. 农业工程学报, 2017, 33 (14): 85- 92
DENG Xi-wen, LEI Ji-lin, WEN Jun, et al Study on oscillating flow and heat transfer characteristics of the cooling gallery inside pistons of a diesel engine[J]. Transactions of the Chinese Society of Agricultural, 2017, 33 (14): 85- 92
doi: 10.11975/j.issn.1002-6819.2017.14.012
14 DENG X W, LEI J L, WEN J, et al Numerical investigation on the oscillating flow and uneven heat transfer processes of the cooling oil inside a piston gallery[J]. Applied Thermal Engineering, 2017, 126: 139- 150
doi: 10.1016/j.applthermaleng.2017.07.146
15 DENG X W, LEI J L, WEN J, et al Multi-objective optimization of cooling galleries inside pistons of a diesel engine[J]. Applied Thermal Engineering, 2018, 132: 441- 449
doi: 10.1016/j.applthermaleng.2017.12.125
16 邓立君. 内燃机活塞内冷油腔内两相流的流动与换热机理研究[D]. 山东: 山东大学, 2017.
DENG Li-jun. Study on flow and heat transfer mechanism of two-phase flow in oil cooling gallery of internal combustion engine[D]. Shandong: Shandong university, 2017.
17 耿泽伟. 高强化活塞内冷油腔振荡冷却效果研究[D]. 河北: 河北科技大学, 2018.
GENG Ze-wei. Study on oscillating cooling effect of high intensified piston inner cooling cavity[D]. Hebei: Hebei University of Science and Technology, 2018.
18 WANG P, HAN K H, YOON S, et al The gas-liquid two-phase flow in reciprocating enclosure with piston cooling gallery application[J]. International Journal of Thermal Sciences, 2018, 129: 73- 82
doi: 10.1016/j.ijthermalsci.2018.02.028
19 黄泽辉. 活塞振荡油腔换热边界条件的试验研究[D]. 山东: 山东大学, 2015.
HUANG Ze-hui. Experimental study on the heat transfer boundary conditions of the piston cooling oil chamber [D]. Shandong: Shandong University, 2015.
20 车得福, 李会雄. 多相流及其应用[M]. 西安: 西安交通大学出版社, 2007.
[1] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[2] 沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.
[3] 应济, 曹超, 焦致凯. 无阀微泵损失系数及整流效率[J]. J4, 2013, 47(2): 249-255.
[4] 汤珂, 张玙, 唐文涛, 金滔. 管内交变流动速度相位侧向分布特性[J]. J4, 2012, 46(4): 604-609.
[5] 白建基 郑水华 樊建人 岑可法. 雷诺数对气固两相圆湍射流影响的实验研究[J]. J4, 2006, 40(3): 433-437.